�

Searchlight Software License Statement

This software and printed documentation are copyrighted products of Searchlight Software, and are protected by both United States copyright law and International Treaty provisions. As the purchaser of this software, you are allowed to make archival copies solely for your own purposes and to protect your investment from loss. This software may be used on one and only one computer.

You may NOT transfer any copy or copies of this software to any person or organization UNLESS you transfer ALL of the copies that you own, and there is NO POSSIBILITY that the software can be used by two or more persons at different locations at the same time. For example, should you wish to sell or give away your copy of the software, you may do so provided that you transfer the original disk(s) and manuals to the new owner, and either erase any other copies you may have, or transfer these copies to the new owner as well. You may not copy this printed manual in any way.

Warranty

With respect to the physical disks and physical documentation enclosed herein, Searchlight Software warrants the same to be free of defects in materials and workmanship for a period of 60 days from the date of purchase. In the event of notification within the warranty period of defects in material or workmanship, Searchlight Software will replace the defective diskette or documentation. The remedy for breach of this warranty shall be limited to replacement and shall not encompass any other damages, including but not limited to loss of profit, special, incidental, consequential, or other similar claims.

�

Searchlight Software, Inc.�6516 Detroit Ave�Cleveland, OH 44102

216-631-9290�800-988-LITE�http://www.searchlight.com

UK Sales & Support:

Telesystems Ltd.

+44 1494 866365

http://www.telesystems.co.uk

Searchlight Software specifically disclaims any other warranties, expressed or implied, including (but not limited to) implied warranties of merchantability and fitness for a particular application� XE "application" �. In no way shall Searchlight Software be liable for loss of profit or any other commercial, special, incidental, consequential, or similar damages.

�Table of Contents

� TOC \o "1-3" \f �Searchlight Software License Statement	� GOTOBUTTON _Toc355765766 � PAGEREF _Toc355765766 �2��

Warranty	� GOTOBUTTON _Toc355765767 � PAGEREF _Toc355765767 �2��

Table of Contents	� GOTOBUTTON _Toc355765768 � PAGEREF _Toc355765768 �3��

Overview	� GOTOBUTTON _Toc355765769 � PAGEREF _Toc355765769 �9��

Web Server	� GOTOBUTTON _Toc355765770 � PAGEREF _Toc355765770 �9��

Applications	� GOTOBUTTON _Toc355765771 � PAGEREF _Toc355765771 �10��

Spinnaker Installation	� GOTOBUTTON _Toc355765772 � PAGEREF _Toc355765772 �12��

Operating Requirements	� GOTOBUTTON _Toc355765773 � PAGEREF _Toc355765773 �12��

Configuration	� GOTOBUTTON _Toc355765774 � PAGEREF _Toc355765774 �13��

Network Settings	� GOTOBUTTON _Toc355765775 � PAGEREF _Toc355765775 �14��

Directories	� GOTOBUTTON _Toc355765776 � PAGEREF _Toc355765776 �15��

Includes	� GOTOBUTTON _Toc355765777 � PAGEREF _Toc355765777 �15��

Directory Aliases	� GOTOBUTTON _Toc355765778 � PAGEREF _Toc355765778 �16��

Mime Types	� GOTOBUTTON _Toc355765779 � PAGEREF _Toc355765779 �16��

Starting Spinnaker	� GOTOBUTTON _Toc355765780 � PAGEREF _Toc355765780 �16��

Controlling the Server	� GOTOBUTTON _Toc355765781 � PAGEREF _Toc355765781 �17��

Shutting Down	� GOTOBUTTON _Toc355765782 � PAGEREF _Toc355765782 �17��

User Profiles	� GOTOBUTTON _Toc355765783 � PAGEREF _Toc355765783 �18��

Groups	� GOTOBUTTON _Toc355765784 � PAGEREF _Toc355765784 �19��

Custom Fields	� GOTOBUTTON _Toc355765785 � PAGEREF _Toc355765785 �19��

Document Security	� GOTOBUTTON _Toc355765786 � PAGEREF _Toc355765786 �21��

Understanding Logins	� GOTOBUTTON _Toc355765787 � PAGEREF _Toc355765787 �23��

Testing your Server	� GOTOBUTTON _Toc355765788 � PAGEREF _Toc355765788 �24��

Tips For Document Creation	� GOTOBUTTON _Toc355765789 � PAGEREF _Toc355765789 �26��

Dynamic HTML	� GOTOBUTTON _Toc355765790 � PAGEREF _Toc355765790 �29��

Scripting	� GOTOBUTTON _Toc355765791 � PAGEREF _Toc355765791 �30��

Macros and Defines	� GOTOBUTTON _Toc355765792 � PAGEREF _Toc355765792 �30��

Includes	� GOTOBUTTON _Toc355765793 � PAGEREF _Toc355765793 �32��

Conditionals	� GOTOBUTTON _Toc355765794 � PAGEREF _Toc355765794 �33��

Nesting	� GOTOBUTTON _Toc355765795 � PAGEREF _Toc355765795 �36��

Macro Applications	� GOTOBUTTON _Toc355765796 � PAGEREF _Toc355765796 �38��

What is a “Macro Application”?	� GOTOBUTTON _Toc355765797 � PAGEREF _Toc355765797 �38��

Using SYS.DLL	� GOTOBUTTON _Toc355765798 � PAGEREF _Toc355765798 �39��

Time and Date Macros	� GOTOBUTTON _Toc355765799 � PAGEREF _Toc355765799 �40��

User Information	� GOTOBUTTON _Toc355765800 � PAGEREF _Toc355765800 �42��

$InGroup	� GOTOBUTTON _Toc355765801 � PAGEREF _Toc355765801 �43��

$InString	� GOTOBUTTON _Toc355765802 � PAGEREF _Toc355765802 �44��

Field Manipulation	� GOTOBUTTON _Toc355765803 � PAGEREF _Toc355765803 �44��

$Isuser	� GOTOBUTTON _Toc355765804 � PAGEREF _Toc355765804 �47��

Using HITCOUNT.DLL	� GOTOBUTTON _Toc355765805 � PAGEREF _Toc355765805 �47��

Using SERVINT.DLL	� GOTOBUTTON _Toc355765806 � PAGEREF _Toc355765806 �48��

Page Applications	� GOTOBUTTON _Toc355765807 � PAGEREF _Toc355765807 �51��

Page Application URLs	� GOTOBUTTON _Toc355765808 � PAGEREF _Toc355765808 �51��

User Profiles Application	� GOTOBUTTON _Toc355765809 � PAGEREF _Toc355765809 �53��

Non-String Fields	� GOTOBUTTON _Toc355765810 � PAGEREF _Toc355765810 �56��

The DEFAULT Account	� GOTOBUTTON _Toc355765811 � PAGEREF _Toc355765811 �56��

Generating a List	� GOTOBUTTON _Toc355765812 � PAGEREF _Toc355765812 �58��

Displaying a Profile	� GOTOBUTTON _Toc355765813 � PAGEREF _Toc355765813 �59��

Image Maps	� GOTOBUTTON _Toc355765814 � PAGEREF _Toc355765814 �61��

The Link	� GOTOBUTTON _Toc355765815 � PAGEREF _Toc355765815 �61��

The Map File	� GOTOBUTTON _Toc355765816 � PAGEREF _Toc355765816 �61��

A Few Tips	� GOTOBUTTON _Toc355765817 � PAGEREF _Toc355765817 �63��

Conferences	� GOTOBUTTON _Toc355765818 � PAGEREF _Toc355765818 �65��

Step 1: Install the WebMsg Files	� GOTOBUTTON _Toc355765819 � PAGEREF _Toc355765819 �65��

Step 2: Make a Node for WebMsg	� GOTOBUTTON _Toc355765820 � PAGEREF _Toc355765820 �66��

Step 3: Set Your Home Directory	� GOTOBUTTON _Toc355765821 � PAGEREF _Toc355765821 �67��

Step 4: Review Your Conference List	� GOTOBUTTON _Toc355765822 � PAGEREF _Toc355765822 �67��

Step 5: The Test	� GOTOBUTTON _Toc355765823 � PAGEREF _Toc355765823 �67��

Conference Maintenance	� GOTOBUTTON _Toc355765824 � PAGEREF _Toc355765824 �69��

Adding New Conferences	� GOTOBUTTON _Toc355765825 � PAGEREF _Toc355765825 �69��

Modifying Conferences	� GOTOBUTTON _Toc355765826 � PAGEREF _Toc355765826 �70��

General Information	� GOTOBUTTON _Toc355765827 � PAGEREF _Toc355765827 �70��

Security	� GOTOBUTTON _Toc355765828 � PAGEREF _Toc355765828 �71��

Administrator	� GOTOBUTTON _Toc355765829 � PAGEREF _Toc355765829 �72��

Using WebMsg	� GOTOBUTTON _Toc355765830 � PAGEREF _Toc355765830 �72��

Commands	� GOTOBUTTON _Toc355765831 � PAGEREF _Toc355765831 �72��

Templates	� GOTOBUTTON _Toc355765832 � PAGEREF _Toc355765832 �72��

WebMsg Macros	� GOTOBUTTON _Toc355765833 � PAGEREF _Toc355765833 �74��

WebMsg Commands	� GOTOBUTTON _Toc355765834 � PAGEREF _Toc355765834 �76��

Header	� GOTOBUTTON _Toc355765835 � PAGEREF _Toc355765835 �76��

Text	� GOTOBUTTON _Toc355765836 � PAGEREF _Toc355765836 �77��

Links	� GOTOBUTTON _Toc355765837 � PAGEREF _Toc355765837 �78��

Threading	� GOTOBUTTON _Toc355765838 � PAGEREF _Toc355765838 �79��

Generating the List	� GOTOBUTTON _Toc355765839 � PAGEREF _Toc355765839 �81��

Paging Through a List	� GOTOBUTTON _Toc355765840 � PAGEREF _Toc355765840 �82��

Searching	� GOTOBUTTON _Toc355765841 � PAGEREF _Toc355765841 �83��

Generating the List	� GOTOBUTTON _Toc355765842 � PAGEREF _Toc355765842 �84��

Alternative Listings	� GOTOBUTTON _Toc355765843 � PAGEREF _Toc355765843 �85��

New Messages	� GOTOBUTTON _Toc355765844 � PAGEREF _Toc355765844 �85��

Creating a Form	� GOTOBUTTON _Toc355765845 � PAGEREF _Toc355765845 �87��

About the Fields	� GOTOBUTTON _Toc355765846 � PAGEREF _Toc355765846 �88��

Anonymous Names & Aliases	� GOTOBUTTON _Toc355765847 � PAGEREF _Toc355765847 �89��

Return Document	� GOTOBUTTON _Toc355765848 � PAGEREF _Toc355765848 �89��

BACKTO	� GOTOBUTTON _Toc355765849 � PAGEREF _Toc355765849 �90��

Replacing Existing Messages	� GOTOBUTTON _Toc355765850 � PAGEREF _Toc355765850 �90��

Email	� GOTOBUTTON _Toc355765851 � PAGEREF _Toc355765851 �90��

High ASCII Translation	� GOTOBUTTON _Toc355765852 � PAGEREF _Toc355765852 �91��

File Libraries	� GOTOBUTTON _Toc355765853 � PAGEREF _Toc355765853 �93��

Installation	� GOTOBUTTON _Toc355765854 � PAGEREF _Toc355765854 �93��

Step 1: Install the WebFile Files	� GOTOBUTTON _Toc355765855 � PAGEREF _Toc355765855 �93��

Step 2: Make a Node for WebFile	� GOTOBUTTON _Toc355765856 � PAGEREF _Toc355765856 �94��

Step 3: Set Your Home Directory	� GOTOBUTTON _Toc355765857 � PAGEREF _Toc355765857 �94��

Step 4: Review Your Library List	� GOTOBUTTON _Toc355765858 � PAGEREF _Toc355765858 �95��

Step 5: The Test	� GOTOBUTTON _Toc355765859 � PAGEREF _Toc355765859 �95��

Using WebFile	� GOTOBUTTON _Toc355765860 � PAGEREF _Toc355765860 �95��

Basics	� GOTOBUTTON _Toc355765861 � PAGEREF _Toc355765861 �95��

Commands	� GOTOBUTTON _Toc355765862 � PAGEREF _Toc355765862 �96��

Library Maintenance	� GOTOBUTTON _Toc355765863 � PAGEREF _Toc355765863 �96��

Preferences	� GOTOBUTTON _Toc355765864 � PAGEREF _Toc355765864 �97��

Adding New Libraries	� GOTOBUTTON _Toc355765865 � PAGEREF _Toc355765865 �98��

Modifying Libraries	� GOTOBUTTON _Toc355765866 � PAGEREF _Toc355765866 �98��

General Information	� GOTOBUTTON _Toc355765867 � PAGEREF _Toc355765867 �99��

Security	� GOTOBUTTON _Toc355765868 � PAGEREF _Toc355765868 �99��

Administrator	� GOTOBUTTON _Toc355765869 � PAGEREF _Toc355765869 �100��

WebFile Macros	� GOTOBUTTON _Toc355765870 � PAGEREF _Toc355765870 �100��

WebFile Commands	� GOTOBUTTON _Toc355765871 � PAGEREF _Toc355765871 �101��

Generating the List	� GOTOBUTTON _Toc355765872 � PAGEREF _Toc355765872 �102��

Alternative Listings	� GOTOBUTTON _Toc355765873 � PAGEREF _Toc355765873 �102��

Generating the List	� GOTOBUTTON _Toc355765874 � PAGEREF _Toc355765874 �103��

Paging Through a List	� GOTOBUTTON _Toc355765875 � PAGEREF _Toc355765875 �104��

Creating a Form	� GOTOBUTTON _Toc355765876 � PAGEREF _Toc355765876 �105��

Generating the Output	� GOTOBUTTON _Toc355765877 � PAGEREF _Toc355765877 �106��

Library Maintenance Strategy	� GOTOBUTTON _Toc355765878 � PAGEREF _Toc355765878 �111��

Spinnaker Warp Application	� GOTOBUTTON _Toc355765879 � PAGEREF _Toc355765879 �115��

Installation	� GOTOBUTTON _Toc355765880 � PAGEREF _Toc355765880 �115��

Using Warp	� GOTOBUTTON _Toc355765881 � PAGEREF _Toc355765881 �115��

How It Works	� GOTOBUTTON _Toc355765882 � PAGEREF _Toc355765882 �115��

Spinnaker WinCGI Application	� GOTOBUTTON _Toc355765883 � PAGEREF _Toc355765883 �116��

Installation	� GOTOBUTTON _Toc355765884 � PAGEREF _Toc355765884 �116��

Using WinCGI	� GOTOBUTTON _Toc355765885 � PAGEREF _Toc355765885 �116��

How It Works	� GOTOBUTTON _Toc355765886 � PAGEREF _Toc355765886 �116��

Using WCGITest	� GOTOBUTTON _Toc355765887 � PAGEREF _Toc355765887 �117��

About This Release	� GOTOBUTTON _Toc355765888 � PAGEREF _Toc355765888 �Error! Bookmark not defined.��

Webversi for Spinnaker Web Servers	� GOTOBUTTON _Toc355765889 � PAGEREF _Toc355765889 �116��

Installation	� GOTOBUTTON _Toc355765890 � PAGEREF _Toc355765890 �116��

About the Game	� GOTOBUTTON _Toc355765891 � PAGEREF _Toc355765891 �117��

The Rules	� GOTOBUTTON _Toc355765892 � PAGEREF _Toc355765892 �118��

Winning	� GOTOBUTTON _Toc355765893 � PAGEREF _Toc355765893 �118��

How Webversi Works	� GOTOBUTTON _Toc355765894 � PAGEREF _Toc355765894 �118��

Templates	� GOTOBUTTON _Toc355765895 � PAGEREF _Toc355765895 �120��

Spinnaker Application Program Interface	� GOTOBUTTON _Toc355765896 � PAGEREF _Toc355765896 �123��

Overview of the Spinnaker API	� GOTOBUTTON _Toc355765897 � PAGEREF _Toc355765897 �124��

Basic Development Concepts	� GOTOBUTTON _Toc355765898 � PAGEREF _Toc355765898 �124��

Non-Modal Programming	� GOTOBUTTON _Toc355765899 � PAGEREF _Toc355765899 �124��

Win32	� GOTOBUTTON _Toc355765900 � PAGEREF _Toc355765900 �125��

Multithreading	� GOTOBUTTON _Toc355765901 � PAGEREF _Toc355765901 �125��

Conventions	� GOTOBUTTON _Toc355765902 � PAGEREF _Toc355765902 �126��

Using the Example Programs	� GOTOBUTTON _Toc355765903 � PAGEREF _Toc355765903 �126��

Page Applications	� GOTOBUTTON _Toc355765904 � PAGEREF _Toc355765904 �127��

Hello, World	� GOTOBUTTON _Toc355765905 � PAGEREF _Toc355765905 �129��

Some Simple Applications	� GOTOBUTTON _Toc355765906 � PAGEREF _Toc355765906 �129��

ServerData Data Structure	� GOTOBUTTON _Toc355765907 � PAGEREF _Toc355765907 �131��

Forms Applications	� GOTOBUTTON _Toc355765908 � PAGEREF _Toc355765908 �132��

Receiving Form Data	� GOTOBUTTON _Toc355765909 � PAGEREF _Toc355765909 �132��

Interpreting Form Data	� GOTOBUTTON _Toc355765910 � PAGEREF _Toc355765910 �134��

Managing Multiple Forms	� GOTOBUTTON _Toc355765911 � PAGEREF _Toc355765911 �135��

Example Code	� GOTOBUTTON _Toc355765912 � PAGEREF _Toc355765912 �135��

Dynamic HTML	� GOTOBUTTON _Toc355765913 � PAGEREF _Toc355765913 �135��

Using the Dynamic HTML Engine	� GOTOBUTTON _Toc355765914 � PAGEREF _Toc355765914 �136��

The Callback Function	� GOTOBUTTON _Toc355765915 � PAGEREF _Toc355765915 �138��

Using the Locals Pointer	� GOTOBUTTON _Toc355765916 � PAGEREF _Toc355765916 �139��

Macro Applications	� GOTOBUTTON _Toc355765917 � PAGEREF _Toc355765917 �140��

Creating a Macro Application	� GOTOBUTTON _Toc355765918 � PAGEREF _Toc355765918 �141��

How Spinnaker Manages Applications	� GOTOBUTTON _Toc355765919 � PAGEREF _Toc355765919 �142��

Miscellaneous Services	� GOTOBUTTON _Toc355765920 � PAGEREF _Toc355765920 �142��

Databases	� GOTOBUTTON _Toc355765921 � PAGEREF _Toc355765921 �145��

USERS.DB File	� GOTOBUTTON _Toc355765922 � PAGEREF _Toc355765922 �145��

FIELDS.DB File	� GOTOBUTTON _Toc355765923 � PAGEREF _Toc355765923 �146��

GROUPS.DB File	� GOTOBUTTON _Toc355765924 � PAGEREF _Toc355765924 �146��

ACCESS.DB File	� GOTOBUTTON _Toc355765925 � PAGEREF _Toc355765925 �147��

Index	� GOTOBUTTON _Toc355765926 � PAGEREF _Toc355765926 �149��

���� EMBED Word.Picture.6 ���

� TC "Overview" \l 1 �Welcome to Spinnaker, the advanced Web server plus Applications for Windows NT and Windows 95! This chapter presents an overview Spinnaker and describes the important distinction between the Spinnaker Web Server and Spinnaker Application programs.

Spinnaker is not a single program; rather, it is a family of programs that work together to produce a total Web site. To understand and use Spinnaker to its fullest, we need to start by breaking Spinnaker down into its logical components.

The two main parts of Spinnaker are the Web Sever module and the Application modules. Let’s look more closely at each of these.

Web Server

The Spinnaker Web Server is the module that accepts “http� XE "http" �” requests from the internet and actually sends data back to a requesting Web browser. You start the Server by launching the program SPIN.EXE from Windows 95 or Windows NT. When we talk about the “Web Sever” or the “Server” in this documentation, we mean the SPIN.EXE module itself rather than the entire Spinnaker product.

In addition to answering http� XE "http" � requests and sending files, the Server implements Spinnaker’s scripting language. Scripting is a feature that lets you use macros, conditional statements, and other program-like features within your HTML documents.

The Server itself does not contain conferencing, file libraries, or any of the other interactive features of Spinnaker. Instead, the Web server implements an interface by which external application� XE "application" �s can be used to generate HTML documents. This is an important concept, because it means that new applications can be created and integrated into the Spinnaker environment as easily as the applications that are included with Spinnaker. In other words, there is no distinction between “native” and “external” applications in Spinnaker. Every application is essentially external to the Web Server, but the interface between the Server and its applications is sophisticated enough that there are no significant disadvantages to this architecture versus an internal/external structure.

When Spinnaker runs an application� XE "application" � program, or when you use a script language element to create a page that contains variables or program structure, you’re generating HTML code “on the fly”. We call this Dynamic HTML� XE "Dynamic HTML" �. Dynamic HTML is not a new kind of HTML or an extension to the HTML language; rather, it refers to the process by which Spinnaker makes an HTML document by running a program or interpreting a script command. Dynamic HTML is one of the most significant features of Spinnaker, because it lets you have Web pages that contain elements that are different depending on who, when or how the page is requested.

Applications

Spinnaker application� XE "application" �s are programs that perform specific functions, like message conferencing. In the Spinnaker environment, an application is a Windows Dynamic Link Library� XE "Dynamic Link Library" � (DLL) rather than an EXE file. Individual applications can have a variety of support files, such as databases, INI files, or configuration programs, that go with them.

Spinnaker application� XE "application" �s use a convention we call CGI-DLL� XE "CGI-DLL" �. Basically, CGI-DLL describes the mechanism by which an application program communicates with the Server and methods by which applications can find out about the connection they are serving. Developers who would like to write Spinnaker applications have full access to the CGI-DLL specifications; see Spinnaker Application Program Interface on page � PAGEREF SpinAPI * MERGEFORMAT �157� for more information.

Applications included with the base Spinnaker package include:

WebMsg� XE "WebMsg" �, a threaded conferencing application that lets you create and maintain conferences� XE "conferences" � on your Web site. WebMsg is compatible with Searchlight BBS� XE "Searchlight BBS" � conferences and can dynamically use the same conferences as a running Searchlight BBS system when used on a file sharing network.

WebFile� XE "WebFile" �, a file library application that lets you create lists of files in various directories with long file descriptions, searching, and dynamic download counts. Like WebMsg, WebFile is compatible with Searchlight BBS directories and can share directory databases with an active Searchlight system.

Profile, an application that lets your users create, view and modify personal user profiles� XE "profiles" �. Profile supports the creation of new fields, so you can customize your user profiles to include information that’s relevant to your system.

ISMAP� XE "ISMAP" �, an application that implements clickable image-map support.

Warp� XE "Warp" �, an application that lets you select a URL from a picklist or form.

WinCGI� XE "WinCGI" �, a “gateway” application that lets Spinnaker run traditional WinCGI executable applications.

Webversi� XE "Webversi" �, an entertaining online strategy game.

Additionally, Searchlight Software produces a comprehensive database� XE "database" � application for Spinnaker called SpinDB that allows searching, display and updating of a wide variety of database types. Contact Searchlight for more information about this product.

Major applications like those listed above are called Page Application� XE "Page Application" �s, because they generally deliver an entire HTML document each time they are used. Spinnaker also supports a second category of applications we call Macro Application� XE "Macro Application" �s. Macro applications are used to insert a small piece of dynamic text into an existing HTML document (or one created with a page application). For example, Spinnaker includes a macro application called Sys which can be used to insert the current system time and date. We also include a Hitcount application that can supply the number of times a document has been requested. As with page applications, new macro applications can be written by third party developers and integrated smoothly into the Spinnaker environment.

Even without its applications, Spinnaker is a very advanced Web server that provides all of the functionality of other commerical Web server products, including security, support for any type of document, standard activity logging, and more.�Spinnaker Installation

If you are installing Spinnaker for the first time, run the Setup program on our installation disk and follow the instructions. We recommend selecting the full installation the first time around.

If you are updating an existing installation, make sure you select “custom install� XE "custom install" �” from our Setup program. Unselect any items you don’t want to install. In particular, do not install the sample Web pages and templates unless you are sure you want to overwrite any existing Web pages and templates with the same filenames (you may want to back-up your document directories first).

Operating Requirements

Spinnaker runs under Windows 95 or Windows NT, and it requires that TCP/IP networking� XE "TCP/IP networking" � be installed. Before you try to install Spinnaker, make sure that your Windows system is set up and TCP/IP is properly installed. You can test whether TCP/IP is working simply by running a Web browser such as Netscape or Microsoft Internet Explorer.

Installing TCP/IP networking, internet connections, and routers is beyond the scope of this document. You should consult the Windows help under “TCP/IP Protocol” or a local internet expert if you need assistance in this area. Note that it is not necessary to have a live internet� XE "internet" � connection to use Spinnaker; it can also function over a local area network, or locally in a single PC. However, the TCP/IP network protocol must be installed before Spinnaker will work.

Spinnaker’s uses the Borland Database Engine� XE "Borland Database Engine" � for its database needs. Your Spinnaker license includes a license to use one copy of the BDE� XE "BDE" �, and the BDE is installed automatically when you install Spinnaker. Be aware that the installation of Spinnaker may impact other BDE applications on your system, such as Borland’s Dbase or Paradox

Configuration

Start the Spinnaker Web server by double-clicking on the Spinnaker (SPIN.EXE) icon. You should immediately encounter this message:

�

The message means that the Sever was unable to communicate with your TCP/IP protocol. This is to be expected when you first load Spinnaker because Spinnaker doesn’t know your IP Address� XE "IP Address" � (an IP Address is a number that specifies your location on a TCP/IP network). Before Spinnaker will operate, you’ll need to supply your address as well as default directory locations and other information.

Click the OK box to bring up Spinnaker’s main configuration screen, which looks like this:

	�

Each tab-stop lets you change various Server settings. We’ll look at the most important settings first, and then describe other settings which you’ll use as you become more familiar with Spinnaker.

Network Settings� XE "Network Settings" �

The most important setting on the Network screen is the Address. This is where you fill in the IP Address to which you want your Web server to respond. This must be the same address you specified when you set up your TCP/IP networking protocol. If you are not sure of this address and you are running Windows 95 or NT 4.x, you can find it by taking the following steps:

Click “Start” and then select “Settings/Control Panel”;

Double-click the “Network” icon;

Find “TCP/IP” in the list of network resources and highlight it;

Click “Properties” and then select the “IP Address” tab. Your system’s IP address should appear here.

If you cannot locate an address this way, consult your network administrator or an internet expert.

Some dialup SLIP� XE "SLIP" � services use “Dynamic” IP� XE "Dynamic IP" � addresses. This type of service can’t be used with a Web server, since a server needs a static address. If you have a SLIP account with dynamic addressing, you will need to contact your service provider and request a static address.

Windows NT systems can support multiple IP addresses. If you run an NT system with more than one IP address, Spinnaker can be configured to respond to any one of your addresses. (Be sure that no other Web server on your system is also configured to respond to the same address).

“Port” specifies the port number on which your server will reside. Port� XE "port" � 80 is the standard port number for a Web server, so fill in the number 80 in this field as shown. (Port numbers other than 80 can be used if you have special needs, such as running two Web servers on a computer with a single IP address).

“Max Sockets” tells Spinnaker how many simultaneous HTTP requests to service at once. The default value is 16, but you can set Spinnaker to service as many as 255 sockets (255 is the operating system limit under Windows 95 and Windows NT). When Spinnaker is servicing the maximum number of sockets you specify, any additional HTTP requests are ignored (the requesting Web browser receives a “Server Busy” error message).

If your system receives a lot of requests, you can set Max Sockets higher than the default value to allow Spinnaker to process more requests. Keep in mind, though, that each additional request consumes more CPU time and memory, slowing down other requests. If you set Max Sockets too high, your Web server may run too slowly. Therefore, choose a number that is a balance between performance and capacity.

Directories

On this screen, you supply directory names for Spinnaker’s working directories. The four directory paths that you are required to provide are Home directory, Temp directory, Maps directory, and Logs directory.

Home Directory� XE "Home Directory" � is where Spinnaker will search for your HTML documents� XE "HTML document" �. This directory can have subdirectories, so it acts as the root of an HTML document tree� XE "document tree" �. Files that are not in the home directory or a subdirectory of the home directory can’t ordinarily be requested by Web browsers, so the Home directory gives you a way to set up a document path while protecting other files on your computer from unauthorized access.

Your Home directory can reside anywhere in your computer or network, as long as you supply a fully qualified path. For example, our Web server uses C:\HTTPD\SL as the home directory. Note that your home directory should not be the same as your working directory� XE "working directory" � (the location where Spinnaker itself is stored).

Temp Directory� XE "Temp Directory" � is a working area that Spinnaker will use to create intermediate files while it is servicing requests. This directory can be anywhere, but you should not use the Temp directory to store any permanent files. If you have a RAM disk, you can improve Spinnaker’s performance by setting the Temp directory path to point there. Be sure you have enough room in your temporary directory to hold about 30 HTML documents.

Maps Directory� XE "Maps Directory" � defines a place where you will store image map definition files. These map files tell Spinnaker how to process requests from image maps� XE "image map" � (clickable graphic regions in a document). For now, create an empty Maps directory. We’ll cover image map creation later in this document.

Logs Directory� XE "Logs Directory" � is where Spinnaker will store logs. Spinnaker generates three different log files (access, referer, and browser) in the Common Log File� XE "Common Log File" � (CLF) format.

The installation program will create and install default directories for each of these options, but be sure to review the paths and make any desired changes before running your server.

Includes� XE "Includes" �

The “Includes” section of the setup screen lets you define symbols that expand to one or more lines of text when used in an HTML document. We’ll cover Includes more when we discuss Spinnaker’s Dynamic HTML capabilities later in this manual. For now, you can leave these fields empty, as they are not required for your Web server to operate.

Directory Aliases� XE "Aliases" �� XE "Directory Aliases" �

The Aliases screen lets you define additional HTML directories that are not part of your home directory tree. This is useful in cases where you have images, HTML documents, or other files that you want to use in your Web pages but which aren’t part of your home directory.

An alias is a name that substitutes for a complete drive and directory path. For example, you can define the alias name “IMAGES” to map to “c:\gifs\web”. Then, you can use the name IMAGES in an HTML document as if it were a subdirectory of your home directory. For example, a reference such as...

	

...would actually retrieve the file “c:\gifs\web\myphoto.gif”. Alias names can apply to HTML documents, images, or any other file that you use with your Web server.

Mime Types� XE "Mime Types" �

A “Mime Type” is a way of describing the contents of a file. For example, the Mime Type of an HTML document tells Web browsers how they should render that document on your screen. Other Mime Types define sound files, images, video, JAVA� XE "JAVA" �, etc.

Spinnaker comes preloaded with most of the Mime Types you will ever need. However, you can modify or add Mime Types to this list if you find it necessary in the future.

Log

Spinnaker can generate three different types of activity logs, called the access log, referer log and browser log. Each log is stored as a separate text file in the Logs directory you specified earlier. You can selectively enable or disable each type of log using the checkboxes on this screen.

Access Log� XE "Access Log" � stores each URL that is requested of your Web server in a file called ACCESS.LOG.

Referer Log� XE "Referer Log" � stores information about where links to your Web site originated in a file called REFERER.LOG.

Browser Log� XE "Browser Log" � stores information about the Web browsers that use your server in a file called BROWSER.LOG.

All of Spinnaker’s logs are stored in the industry-standard Common Log File format. That means you can use your log files with a variety of analysis utilities designed to operate on Web server logs. If you don’t have a special log analysis application, you can also view the log files with a text editing program like Notepad or Wordpad.

Logs consume disk space and take a small amount of time to create, so you can improve performance if you enable only those logs that your application requires.� XE "Mime Types" �

Starting Spinnaker

You need to shut down Spinnaker and restart it before your configuration changes take effect. To shut down the Server, click the “Server” menu and choose Exit.

Now, double-click the Spinnaker icon to restart it. This time, Spinnaker should reappear without any warning messages. If it does, your server is running and ready to serve HTML documents.

If you get a “Bind Failed� XE "Bind Failed" �” message, it means that the IP address you entered in the Network Settings page is not correct. Check your TCP/IP network protocol settings and make sure you are using the same IP number as specified there. If you are unsure what your IP address is, consult a network administrator or internet expert in your area.

Controlling the Server

Spinnaker has a few simple controls that you can use to monitor its operation. At the top left of the Spinnaker window, the two small controls that resemble a square and a right-pointing triangle can be used to stop and start the Web server, respectively. When you stop Spinnaker, it no longer responds to http� XE "http" � requests, but the program window remains open. You may occasionally wish to stop and restart Spinnaker this way. For example, it is necessary to stop the server temporarily whenever you add or delete custom fields from your user file.

At the bottom of Spinnaker’s window are four tab-stops that let you toggle between an activity display, a display of active connections, an application� XE "application" � programs list, and useage graphs.

Shutting Down� XE "Shutting Down" �

When you click the Stop button, Spinnaker offers you two options. You can stop all connections immediately, which will abort any file or document transfers that are in progress. Or, you can simply stop accepting new requests but continue processing existing requests until they are complete. This is a more elegant way of shutting down, since it allows connections in progress to finish and doesn’t abort files. However, you may wish to shut down immediately if you can’t wait for connections in progress to complete.

To exit Spinnaker completely, click the Server menu and choose Exit.

User Profiles� XE "Profiles" �� XE "User Profiles" �

Spinnker offers a flexible and powerful system of user profiles and access controls that lets you regulate who can access different parts of your Web server. In other words, you can configure individual resources (like document directories, conferences, file libraries, etc.) such that they are only available to certain users.

The Users and Groups� XE "Users and Groups" � Manager utility (USERGRPS.EXE� XE "USERGRPS.EXE" �) is the key to Spinnaker’s security system. It’s here that you can review a list of users who have signed on to your Web site and modify their access rights (or create and delete accounts� XE "accounts" �). Run the Users and Groups Manager to reveal its main working screen:

�

At left is a scrollable list of all the user accounts on your system. If your account list is large, use the Find dialog on the File menu to locate a desired account name quickly. (A new Spinnaker system has only one account, called DEFAULT; new accounts are created when your users submit profiles via the PROFILE.DLL application or when you create accounts manually here). The tabs across the top of the screen let you select between Groups and Custom Fields. From the File menu, you can add and delete accounts, groups and custom fields.

Groups� XE "Security Groups" �� XE "Groups" �

Spinnaker uses a group-oriented security system that’s similar to what you find on LANs and network file servers. Each user can be a member of one or more arbitrary Group Names that you define; then, you regulate access to resources (like document directories or conferences) by defining which groups can use those resources. (We’ll cover how you assign security to individual directories later in this documentation; security issues involving conferences and other application-based resources is discussed in the documentation for the individual application programs).

In actuality, Spinnaker supports three types of security: in addition to group names, you can also regulate access by individual username or by IP address. However, groups are the most powerful of Spinnaker’s access concepts and group security is the most useful type of security for most people.

To assign an existing group name to a user, highlight that user’s name on the left column, and then double-click the group name. This has the effect of moving that group name from the left (“Not Member Of� XE "Not Member Of" �”) to the right (“Member Of� XE "Member Of" �”) column. To perform the opposite action, simply double-click the group name on the right.

To create or remove group names from the list of available groups, choose File/New Group or File/Delete Group.

Custom Fields� XE "Custom Fields" �

Spinnaker’s user file lets you create your own fields, so you can customize the contents of your user records to meet your individual needs. If you want to collect addresses, phone numbers and birthdates from your users, simply add these fields to your user file. If you’d rather know what types of computers your users have and how they use the internet, you can create fields for that information, too.

Click on the Custom Fields tab to have a look at custom field maintenance. Your screen shows the current field list for your user file, or the default fields provided with Spinnaker if this is a new installation. You can view the field contents for a particular user by highlighting that user’s name on the left; you can modify field contents by double-clicking on the desired field and editing or retyping the data.

Before you can add or delete custom fields, you need to stop or shut down Spinnaker. The Users and Groups Manager will prevent you from adding or deleting custom fields if Spinnaker is active or if any other program is actively using the Spinnaker user file.

To add a new field, click New Custom Field� XE "New Custom Field" � from the Custom Fields menu. You’ll be asked to supply a field name and a field type. Spinnaker supports the following field types� XE "field types" �:

String� XE "String" � (lets you enter a variable number of alphanumeric characters)

Number� XE "Number" � (for numbers in the range plus or minus 2147483684)

Boolean� XE "Boolean" � (stores a binary yes or no value)

Date� XE "Date Field" � (stores a date, including the year)

Time� XE "Time Field" � (stores a time, including seconds)

If you choose the String type, you can also enter a maximum length for the string. Choose a length that is at least as large as the largest input you expect. For the other field types, the size of the field is set automatically.

For field types other than String, you (or your users) must input data in a predefined format in order to store information in the field. See page � PAGEREF PostNonStringFields * MERGEFORMAT �56� for more information.

When you create a field, you’re also asked to choose one of three access types� XE "access types" �:

User can initialize

User can update

User can’t update

The access type you choose determines whether your users will have direct control over the contents of that field in their user profile (users can view and manipulate their user information through the PROFILE.DLL application, which we’ll cover later in this manual). If you choose User can update, your user has complete control over that field, and can change its contents at any time. For example, a field like “Location” will probably carry this type of access, allowing the user to update his or her location whenever necessary.

If you choose User can initialize, you create a field that your user can supply data for when first creating their account, but can’t update later on. You might use this setting on a phone number field, so that once you verify a phone number, it cannot be changed.

If you choose User can’t update, you create a field that your user cannot initialize or change at all. You can use this setting to create system-maintained field� XE "system-maintained field" �s, like the date and time of the user’s last visit, or a hit count for a particular page. Special commands in the SYS.DLL and PROFILE.DLL applications let you modify these fields systematically; the “can’t update” setting prevents someone from manually tampering with all your hard work.

You can change the status of an existing field by choosing Edit Custom Field� XE "Edit Custom Field" � from the Custom Fields menu after highlighting that field on the right-hand portion of your screen.

There is virtually no limit to the number of fields you can create, but keep in mind that each field causes your user file to grow in size, so it is best to avoid creating unnecessary fields or fields that are unnecessarily large. For more information about setting and displaying the information contained in these fields, see PROFILE.DLL on page � PAGEREF PROFILEDLL * MERGEFORMAT �53�.

If you want to remove an existing custom field, select the field by clicking on the field contents and then choose Delete Custom Field� XE "Delete Custom Field" � from the Custom Fields menu. After you confirm the deletion, the Users and Groups manager removes the field and shrinks your database. (There is no way to recover the contents of a custom field once is is deleted; if you are not sure you want to delete the field, make a backup copy of your databases before you do so).

Spinnaker uses the Borland Database Engine to store your user information in a Paradox� XE "Paradox" � format database. You can manipulate your user file through Paradox or another database program that supports Paradox or BDE databases. For more information, review our API documentation (page � PAGEREF SpinAPI * MERGEFORMAT �157�).

Document Security� XE "Security" �� XE "Document Security" �

Spinnaker lets you control access to your HTML documents and other file resources on a directory-by-directory basis, using the group names and user accounts established in the Users and Groups Manager. To view or change document security, run Spinnaker’s Security Manager� XE "Security Manager" � module (SECMAN.EXE� XE "SECMAN.EXE" �).

A new Spinnaker installation assumes that every directory in your system is “off limits” to HTTP requests. So, before you can use your server, you’ll need to tell Spinnaker to allow access to those directories containing your HTML documents.

�

At the left of this dialog is a tree diagram showing the available directories (folders� XE "folders" �) in your system. To the right are tabs that let you set the security rights for each directory.

To begin, highlight a directory by clicking on it. Start with your main HTML documents directory (the Home Directory you selected when installing Spinnaker). Remember, all directories are “off limits” until you explicitly assign security to them, so you’ll need to do something with your main directory before your server can produce any documents.

The “Enforce Security� XE "Enforce Security" �” checkbox tells you whether security is enforced for the selected directory. All directories start off with this box checked. If you wish to remove all security from a directory, simply un-check this box. Now the directory is public, and anyone can request a file within it.

If you want to grant access to a directory on a limited basis, check the “Enforce Security” box and turn your attention to the lower half of the screen. There are three methods by which you can grant access: by Groups, by Users, or by IP Addresses. You can use one, two, or all three methods on any given directory. The Groups method is the most common way to assign security.

Choose a group name� XE "group name" � on the left and move it to the right by double-clicking the name. Now, any user who has the same group name associated with their account can request files from the directory; users who do not have that group name cannot. If you move multiple group names into the Allow Access column, then users who have any of those groups associated with their account have access to the directory (thus, a directory can be available to several different groups at once).

Groups give you a convenient way to lump users together for the purposes of security. Sometimes, though, you want to assign security on an individual basis. Spinnaker gives you the opportunity to do this by clicking the Users tab. To allow an individual user access to a directory, regardless of group associations, find the user’s name in the left column and move it to the right column with a double-click.

Spinnaker even lets you control access by IP number (the internet address from which a request originates). Click the IP Address� XE "IP Address" � tab. You can choose to allow only a certain set of IP addresses, or deny a certain set while allowing others. To add an IP address, click the Add... key and enter a four-part IP address (such as 207.54.137.11).

If you use multiple security methods on a directory, Spinnaker evaluates them according to the following formula. First, the IP Address list is checked. If IP Address security is used, users who fail the IP Address test are immediately denied access to that directory, regardless of username or group association.

If the IP Address test succeeds, the request is checked agains the Users and Groups security lists. If one of these two tests succeeds, the user is granted access. Otherwise, access is denied. Note that passing the IP Address test alone doesn’t automatically guarantee access to a directory; the user must pass both the IP Address test and pass either the Group or User test.

When you start the security manager, your Spinnaker home directory is highlighted. Normally, your HTML documents will reside in this directory or in its subdirectories. Spinnaker automatically supports subdirectories of your home directory when it processes HTML requests (as long as the request passes its security tests).

You can use the security manager to assign security to directories above your home directory, and even directories on other drives. However, Spinnaker cannot retrieve files from locations above your home directory unless you supply a directory alias for that directory (see page � PAGEREF Alias * MERGEFORMAT �16� for more information).

Many Spinnaker applications (like WebMsg and WebFile) offer similar access control screens to regulate their resources. Consult the chapters for these applications for more information.

Understanding Logins� XE "Logins" �

Whenever Spinnaker receives a request for a “secure” document (one that exists in a directory that has the “Enforce Security” flag set), it checks to see whether the request is accompanied by a login name and password� XE "password" �. If it is, and if the account passes your security tests, the page is returned.

If not, Spinnaker returns an Error code 401� XE "401 error" �� XE "error code 401" � to the Web browser. The browser will, in turn, pop up a dialog box prompting the user to enter an appropriate name and password. If correct information is entered, then the request is filled.

It’s important to understand that a user is not “logged in” until a request for a secure page causes them to be prompted for a name and password. You can choose to make some, none, or all of your Web site’s pages secure. On sites that have primarily unsecure pages, you may find it useful to establish a secure “login page” solely for the purpose of establishing a login.

What happens next depends on the Web browser. Most browser will continue to send the name and password information with each subsequent request; from that point on, the user can enter secure or unsecure pages without reentering any password information.

Spinnaker keeps track (by IP address) of which users have recently sent passwords. If someone requests a secure page and transmits a valid name and password, Spinnaker expects all subsequent requests from that IP address to contain the same name and password for a period of fifteen minutes. If a request within that time period does not contain a name and password, Spinnaker returns Error code 401, even if the request is not for a secure page. This causes the Web browser to automatically repeat the request with a name and password.

Spinnaker uses this fifteen-minute timeout period as a way of ensuring that each page request from a logged-in user has a valid name and password. In turn, this allows you to use user-related features (like the <$sys.field> or <$sys.ingroup> macros) even on insecure pages, assuming the user has previously “logged in” by requesting a secured page. Without the fifteen-minute timeout period, user-related macros would work only on secure pages.

Under normal circumstances, the fifteen-minute timeout period is completely transparent to you and your users. Should you log in to Spinnaker, shut down your browser, restart your browser, and request a nonsecure page, you might notice that Spinnaker prompts you for a password, due to the fact that you logged in previously.

Testing your Server

Before you can test your Spinnaker installation, you need to supply some HTML documents for it to serve. If you already have HTML documents available, copy them into your Home directory. (If you installed the sample documents and templates when you installed Spinnaker, several examples are included for you to get started).

The file INDEX.HTM is the “default” HTML document that most Web browsers will look for, and it’s also the document that Spinnaker will try to retrieve if a request comes in without a document name. So, the best place to start is with a file named INDEX.HTM.

Spinnaker supports Windows 95 and Windows NT long filenames, so you can use filenames with more than twelve characters. Some people prefer to use the .HTML extension instead of .HTM (Spinnaker recognizes both as HTML documents and will default to either INDEX.HTM or INDEX.HTML). If you use long filenames, be sure that your HTML editor or other text processing program can work with them.

A description of the HTML� XE "HTML" � command language and HTML document creation is beyond the scope of this document. If you need help creating HTML documents, there are a wide variety of books available on the subject and there are also a number of shareware and commercial HTML document editors you can purchase. It is not necessary to use an HTML editor to create documents; HTML documents can be created simply by using a text editor such as the Notepad editor that comes with Windows.

Assuming Spinnaker is running and you have at least one HTML document in your home directory, you are ready to test Spinnaker by requesting your document from a Web browser. Load a Web browser such as Netscape or Microsoft Internet Explorer. If your system is already connected to the internet, you can test your server by loading a browser on any other Internet connected PC. If you do not yet have a live internet connection, you can test your server by loading a browser on the same PC that runs the server.

To test your server, you need to type in either your world wide web domain name� XE "domain name" � or your server’s IP address. If your internet service provider has already configured a domain name that points to your server’s IP address (for example, www.searchlight.com), you can use that address to request a document. If not, you can use your IP address; for example, “http://207.54.137.11/index.htm”.

If all has gone well, your browser should display your HTML document after a brief pause, and you should see a number of lines in Spinnaker’s activity log window.

If no document is retrieved, check to make sure that you have correctly specified a home directory for HTML documents in Spinnaker’s setup screens. Also check your IP address and port number (the port number should be 80). When you are sure all is correct, close Spinnaker and restart it. You may wish to click on the “Stop” and “Start” buttons in Spinnaker’s menubar to be sure the Server is started.

If you see some activity in Spinnaker’s log window when you request a document, but you do not receive the correct output, you are probably requesting an invalid filename or you have an invalid Home Directory path set in Spinnaker. If you see no activity at all, it is probable that either your IP address is wrong or your TCP/IP networking protocol is not working correctly.

Tips For Document Creation

Any document in your home directory can be referenced simply by appending “/filename” after your IP address or domain name. So, a document named “index.htm” is referred to by typing “http://207.54.137.11/index.htm” or “http://mydomain.com/index.htm”.

A document in a subdirectory is referenced by declaring the path to the file using your home directory as the root. If your home directory is “c:\httpd\sl” and you have a file called “c:\httpd\sl\people\bob.htm”, you would call that file up with a URL such as “http://mydomain.com/people/bob.htm”.

Note that forward slashes rather than backslashes are used when you specify a URL. This is a Unix convention that has been adopted by most PC based Web browsers and servers. Spinnaker always converts forward slashes to backslashes when it searches for a file.

Within documents themselves, you can refer to other documents on your Web site without the “http://” specifier or your domain name. Web browsers are smart enough to add this information on to the request themselves. So, if you have two HTML documents named INDEX.HTM and PRODUCTS.HTM, a link from your index page to your products page might look like this:

	

If the file PRODUCTS.HTM were in a subdirectory called “business”, then your link would look like this:

	

HTML conventions allow you to reference a document that’s in the same directory as another document without supplying a path. In other words, say you have two documents in your Products directory:

	products/modems.htm�	products/software.htm

Within the modems.htm document, you can place a link to software.htm with . You don’t need to use “products/software.htm” because Web browsers automatically look for linked documents� XE "linked documents" � in the same directory as the current source document.

Caveat: If you do want to link to a document in a different directory, you have to start the URL with a forward slash. For example, let’s say you have a document called products/modems.htm and another document in a different directory, files/list.htm. To create a link from one to the other, you need . The link won’t work; you need the leading forward-slash to tell your browser that the path starts from the root.

Your HTML documents are the heart of your Web site, so you will want to take some time in creating documents and laying out an appropriate directory structure. Before you do this, though, read the rest of this documentation, especially the parts about includes, applications and Dynamic HTML. These Spinnaker resources, when used properly, will greatly enhance your documents.

��

� TC "Dynamic HTML" \l 1 �� XE "Dynamic HTML" �The term Dynamic HTML refers to Spinnaker’s ability to generate HTML documents “on the fly”. Because Spinnaker can create a new HTML document each time a request is processed, your Web site isn’t limited to a set of static pages� XE "static pages" �. Rather, you can design pages that change based on user security or preferences, how or when a page is requested, and a variety of other criteria. You do this by placing special Spinnaker commands in your documents or by modifying the URL used to access a page.

Dynamic HTML isn’t a new kind of HTML or a proprietary extension to the HTML language, and no special Web browser is needed to use it. Dynamic HTML is a system of generating HTML documents automatically from templates� XE "templates" �. Some Web servers call this “server side include� XE "server side include" �s”, although Spinnaker’s Dynamic HTML is significantly more powerful than other SSI systems.

Dynamic HTML has three main components. Scripting lets you create variables and conditional branches in your HTML documents. Macro Application� XE "Macro Application" �s let you use programs to insert text into a page. Page Application� XE "Page Application" �s let you use programs to generate entire HTML documents. By “programs”, we mean any compiled Windows program that conforms to Spinnaker’s CGI-DLL� XE "CGI-DLL" � specification or to the older WinCGI� XE "WinCGI" � standard. A number of such programs are supplied with Spinnaker and others can be created by third-party developers (more CGI-DLL information can be found on page � PAGEREF SpinAPI * MERGEFORMAT �157�).

Often, scripting, macro applications and page applications are used together in the same HTML file. In this section, we’ll examine each of these separately and then look at ways to use them together.

Scripting� XE "Scripting" �

Scripting is a catch-all phrase used to describe a variety of special commands you can place within an HTML document. All scripting commands have in common the fact that they are read and processed by the Spinnaker server before a page is delivered to a user’s Web browser. Thus, although scripting commands look like HTML tags, they are not extensions to the HTML language and do not require a special Web browser or browser add-on.

Scripting commands fall into three categories:

Macro� XE "Macro" �s are symbols that are replaced with specific information each time a page is processed. An example of a macro might be the symbol “<$phone>”, which is eventually replaced with a specific telephone number. Macros are similar to variables� XE "variables" � in a programming language.

Includes� XE "Includes" � let you “nest” one document inside of another. You can even nest documents created by application programs inside of other documents.

Conditionals� XE "Conditional Statement" � alter an HTML document by selecting one section of HTML text over another based on a condition, or by repeating part of a document a set number of times. Conditionals correspond to statements like if, else, switch and while in a programming language.

Macros� XE "Macros" � and Defines� XE "Defines" �

Generally speaking, a macro is any word that starts with a $ character and is placed inside of greater than/less than brackets (the standard for HTML tags). Some examples of macros are <$phone>, <$address>, and <$heading>.

When Spinnaker encounters a macro in an HTML document, it strips the macro out and replaces it with the macro’s definition. So, if the macro <$phone> is defined as “216-631-9290”, Spinnaker will strip out the text <$phone> and replace it with 216-631-9290.

How do you define the value of a macro? Actually, there are several ways. The simplest is to place a $define statement in your HTML document, either at the top of the document or anywhere before you want to use the macro itself. Here is a very simple HTML fragment that demonstrates a define:

	<$define $phone=216-631-9290>�	... (other HTML code here) ...�	You can reach us by calling <$phone> during business hours.

The general syntax for a define is <$define $symbol-name=value> or <$define $symbol-name value> (the equals sign is optional). Symbol names must begin with a dollar-sign character and can contain up to 30 alphanumeric characters. Values can contain up to 128 characters. You can use just about anything you like as a value, including text and HTML tags, and even other macros.

Looking at this example, you may be wondering “why should I use a macro?” Indeed, in this case, a macro doesn’t buy you much flexibility. But there are ways you can turn macros into a very powerful management tool. For example, if the macro <$phone> were defined at the top of a very large document and used many times throughout the document, and then your phone number changed, you could update your document simply by changing the macro definition at the top. You wouldn’t need to search your document and replace every instance.

Since macros can contain HTML tags, you might want to use them to define styles. Let’s say you have an HTML document that contains many paragraphs and you’d like each paragraph to start off with a heading in a large font. Rather than using literal HTML tags like <H1> and </H1> throughout your document, consider defining macros instead. For example:

	<$define $headingon=<H1>>�	<$define $headingoff=</H1>>��	<$headingon>Our Support Policy<$headingoff>�	Many of you have been wondering about our support polices...

Again, the advantage here is that you can change the style of every heading in your document simply by changing the two define statements at the top of the page. If you want to italicize each heading, simply add the <i> tag to your $headingon macro and </i> to $headingoff.

Defines are especially useful when used in conjunction with Includes, which we’ll describe in a moment.

Spinnaker evaluates macros recursively, so macros can contain other macros or any Dynamic HTML element. In other words, if the macro <$mymacro> was defined to contain the literal text “<$phone>“, and the macro <$phone> contained a phone number (like 631-9285), then a reference to <$mymacro> in your document would produce the text “631-9285”.

Spinnaker also provides an <$undefine� XE "undefine" �> statement that you can use to delete the definition of a macro later in a document. This can be useful in large documents or documents that contain include files. The syntax is simply <$undefine $symbol-name>; for example,

	<$undefine $phone>

If you define a symbol without supplying any text (for example, <$define $done>), Spinnaker automatically assigns the symbol a logical value of “True”. Subsequently, you can use that symbol in conditional branches, like <$if $done>. To delete the definition of the macro, you can use <$undefine $done> later.

A special command, <$defineblank� XE "defineblank" �>, lets you create a macro that contains nothing at all. This is sometimes useful in documents where you want the value of a macro to be blank, but you still want the macro to exist.

A $define statement isn’t the only way you can have a macro. Application programs can also define macros. When an application defines a macro, the macro is replaced with the output of a function in the program. Thus, macros can do more than substitute one literal string for another; they can provide dynamic information like hit counts or the current time of day. We’ll talk more about application macros in the Macro Applications section of this document.

Macros as Numbers

If you $define a macro equal to a number (for example, <$define $mymacro 25>), you can use the <$increment> tag to add (or subtract) a value from that number. For example, the tag <$increment $mymacro 5> would add 5 to the value of $mymacro, making its new value 30. To subtract rather than add, use a negative value: <$increment $mymacro -5>.

Includes� XE "Includes" �

Sometimes you want to create a boilerplate document� XE "boilerplate document" � that’s reused in several other documents. You could create your boilerplate and then use a text editor to paste it inside all of the target documents, but if you want to update the boilerplate text later, you’ve got to update each individual target document.

Includes provide a better way of handling these situations. With an include, you make a boilerplate document and then insert a reference to that document inside of your target documents. Whenever one of your target documents is requested, Spinnaker dynamically inserts the boilerplate text into the document and transmits the result. Thus, if you change the boilerplate, you do not need to adjust your target documents; they are automatically updated when they are used.

The syntax for an include is <$f filename>. For example:

	<$f c:\httpd\phone.htm>

This statement would be replaced with the entire contents of the file PHONE.HTM.

Note: you must use a complete pathname and drive letter when you include a document, as in this example.

You can use includes to organize information that is common to many pages on your Web site. For example, if you want each of your pages to end with a link to your home page, you can make that link part of an included document. That way if you want to change it later, you only have to update it in one place. You might also want to use includes to build up a library of macro definitions for text styles, etc. Included documents can contain macros, conditionals, HTML tags, and anything else that you can use in a regular document.

Conditional� XE "Conditional Statement" �s

Conditionals are perhaps the most powerful aspect of Spinnaker’s Dynamic HTML concept. With conditional expressions, you can direct Spinnaker to select one portion of an HTML document while excluding others. These selections can be based on the value of any macro, including macros you define or macros implemented by application programs.

Perhaps the easiest way to introduce conditionals is to look at an example.:� XE "if statement" �

	<$if $sys.night>�	 <body background=images/backgrnd/field.gif>�	<$else>�	 <body background=images/backgrnd/concret2.gif>�	<$end>

This fragment of HTML code says: If it’s night time, use the image “field.gif” as the background of our page. Otherwise, use the image “concret2.gif”. To be more specific, Spinnaker looks at the statement <$if $sys.night> and determines whether the macro “$sys.night” is true or false. If it is true, then Spinnaker strips out all the text between the <$else> and <$end> statements from the document. If it’s false, Spinnaker strips out the text between <$if> and <$else>. Either way, once these five lines are processed, our document contains only one final line, which is either of the two image references depending on whether it’s daytime or nighttime. The result is that when you retrieve this page during the daytime, you get a different background than if you were to retrieve the same page at night.

The <$else>� XE "else statement" � part of this expression is optional. If no <$else> were provided, then Spinnaker would insert the field.gif line if $sys.night were true, and nothing at all if it were false.

You may be wondering how Spinnaker knows whether it’s day or night. The answer lies in the $sys.night macro. This isn’t a macro created with a <$define> statement, like those we saw earlier. Instead, $sys.night is defined by a Macro Application program. The program checks your system’s clock and returns true or false depending on whether it’s before or after midnight.

Most Spinnaker applications have at least a few macros that are designed specifically for use with conditional statements. Macros like $sys.night don’t return any useful value if you just display them in a page; instead, they are always used in conjunction with a conditional expression. You can use macros that you define with a <$define> statement in a conditional expression; such macros evaluate as “true” if the macro is defined to any value at all, or “false” if the macro was never defined or undefined with an <$undefine> statement.

Spinnaker implements many macros like $sys.night that you can use in your documents. We’ll cover all of the default macros that you can use when we talk about Macro Application programs later. First, though, we’ll look at the other conditional expressions that you can use in your documents besides <$if>.

<$ifnot>� XE "ifnot statement" ��This statement is very similar to <$if>, except that it includes HTML code if the macro is not true. Sometimes it is more convenient to say “ifnot” than “if”, so both variations are supported. As with <$if>, <$ifnot> can have an <$else> clause and must be terminated by <$end>.

All conditional directives require an <$end> statement� XE "end statement" � to mark the end of the directive’s scope. You MUST include this statement if you use conditionals! Failing to include it will result in your entire document being processed incorrectly. The part of a document between a conditional statement and its <$end> statement is sometimes called a “block� XE "block" �”.

<$switch $macro>�<$case text>� XE "switch statement" �� XE "case statement" ��With the <$if> and <$ifnot> directives, you can select one of two possible outcomes. With <$switch>, you can select from a whole list of possible outcomes based on the actual value of the macro.

The <$switch $macro> statement marks the beginning of a switch and an <$end> statement marks the end. In between, individual <$case text> blocks are either inserted or deleted based on whether the text parameter matches the value of the macro. Again, an example will help illuminate the issue:

	<$switch $name>�	 <$case BULLETIN><A href="$webmsg.list.<$name>.-1.40.listbull">�	 <$case WWW><A href="$webmsg.list.<$name>.-1.40.listbull">�	 <$case BEACON>�	 <$else><A HREF="$webmsg.list.<$name>.-12.12">�	<$end>

$Name is a macro defined by WebMsg� XE "WebMsg" �, Spinnaker’s conference application. WebMsg sets $name equal to the name of the current message conference. In this switch statement, we check to see if the current conference name is BULLETIN, WWW or BEACON. If it is one of these, we insert the corresponding reference into our HTML document; if it isn’t, we insert the text after the <$else> clause.

The <$else> clause is used only when the macro didn’t match any of the <$case> clauses. <$else> is optional; if you omit it and no <$case> clauses match, then no text is inserted.

Notice that there is no <$end> statement between one <$case> clause and the next. The appearance of the <$case> tag itself serves as the delimiter between clauses. Of course, the <$end> tag is required to mark the end of the entire statement. There is no limit to the number of <$case> statements that can be associated with one <$switch> statement.

A <$case> statement can contain a macro in addition to, or as a substitute for, a literal string. For example, if we wanted to compare the conference name to the value of a macro called $ourconf, we could write:

	<$case <$ourconf>>

Spinnaker always evaluates any embedded macros within a conditional statement before it executes the statement itself.

Currently, <$case> statements can only evaluate whether a macro exactly matches the given text. Relational operations� XE "Relational operations" � (i.e. greater than, less than) are not supported at this time, but may be supported in future versions. The comparison of the <$case> text to the switch macro is not case-sensitive.

<$while $macro>� XE "while statement" ��The <$while> statement creates “loops� XE "loops" �” within your HTML documents. That is, it causes a particular section of your document to be repeated until a condition is met. Here is an example:

	<PRE><$while $text><$line>�	<$end></PRE><HR>

When Spinnaker encounters the <$while> statement, it evaluates the macro $text (which, in this case, is supplied by the WebMsg application). If $text is true, the information between the <$while> and <$end> statements is inserted into your document. Then, $text is evaluated again. If it’s still true, Spinnaker again inserts the text between <$while> and <$end>. Only when <$text> becomes false does the loop end.

Loops like these are commonly used when setting up application programs like WebMsg, WebFile, and Webversi. They allow you to insert a variable number of lines into a document depending on things like the size of a list. This loop inserts the lines of text from a conference message into an HTML document, one line at a time. Notice that the macro <$line> actually changes value after each iteration of the loop (this is possible since it’s defined in the WebMsg application program rather than as static text).

Caution: <$while> loops should be used ONLY with macros that are supplied by application programs and only with those macros specifically designed to be used in a while loop. If you use <$while> with a macro that was not designed for it, you can lock Spinnaker in an infinite loop� XE "infinite loop" �!

<$for>� XE "for statement" ��Sometimes, you want to repeat a section of HTML code with a slight variation for each repeat. Spinnaker gives you a “For” loop that does just this. Here’s an example:

	<pre><$for $image fred.gif bill.gif ralph.gif>�	<img src="/images/<$image>">�	<$end></pre>

This loop executes three times. Each time through, Spinnaker sets the macro “$image” equal to one of the three arguments (fred.gif, bill.gif, and ralph.gif). The resulting output is three image tags, each with a different filename. Although this is a simple example, For loops can save a lot of time if the loop is large and complex or if the For variable is used many times throughout the loop.

Nesting� XE "Nesting" �

Spinnaker’s Dynamic HTML elements are fully nestable. That is, a given block of HTML between a conditional statement and an <$end> statement can contain other conditional blocks, and so on. Here is an example of multiply-nested $if statements:

	<$if $sys.morning> Good Morning! <$else>�	 <$if $sys.afternoon> Good Afternoon! <$else>�	 <$if $sys.evening> Good Evening! <$else>�	 <$if $sys.night> Good Night!�	 <$end>�	 <$end>�	 <$end>�	<$end>

If you use this type of syntax in your documents, be very careful to keep your <$end> statements properly matched with your <$if> statements. Failure to do so can cause unexpected results. An easy way to keep your statement blocks in order is to indent each successive block a little bit, as we’ve done here. Since white space� XE "white space" � is ignored by Web browsers, the extra spaces don’t make any difference in the final document, but they do help you to see that you have a proper <$end> statement for each <$if>.

If you use includes, you should make sure that each conditional statement is properly matched with an <$end> statement within the include file. Although this is not strictly necessary, an include file with an unmatched conditional statement can cause problems that are very difficult to track down.

When Spinnaker skips a block of text (because of a false condition), it does so in a very efficient manner. Particularly, none of the macros inside the skipped block are evaluated, since their results won’t be used. This can make a difference in cases where a macro has a side effect, like incrementing a counter. Take this fragment as an example:

	<$ifnot $sys.night>�	 This page has been requested <$hitcount.text homepage> times.�	<$end>

The macro <$hitcount.text homepage> displays a hit count for the page. It also increments the hit count� XE "hit count" � when it is evaluated, so each successive request for the page displays a higher number.

Our intention here is to hide the hitcount if the page is displayed when $sys.night is true. The problem is that our hit count will be inaccurate, since Spinnaker will not evaluate the $hitcount macro when $sys.night is true (thus, the counter will not increment). If that’s really what we want, then this is fine. On the other hand, if we wanted to increment the counter without displaying it, this fragment won’t work.

One way we could increment our hit count without displaying it is to hide the count in an HTML comment� XE "comment" � tag:

	<$ifnot $sys.night>�	 This page has been requested <$hitcount.text homepage> times.�	<$else>�	 <!--- <$hitcount.text homepage> --->�	<$end>

Either way, the $hitcount macro is evaluated and the count is updated. When $sys.night is false, the number is hidden from view by the comment tag (comments are a standard part of HTML).

Macro Applications� XE "Macro Applications" �

Thus far, we’ve learned how to use macros as placeholders� XE "placeholder" � for common text strings and as directives in a conditional statement. In this section, we’ll cover the Macro Applications mechanism and document the applications and macros that are available to you with a basic Spinnaker installation.

What is a “Macro Application”?

A Macro Application is a program that serves only to define specific macros for use within HTML documents. Spinnaker’s Macro Applications are Dynamic Link Libraries� XE "Dynamic Link Library" � (*.DLL files). Each Macro Application DLL can implement one or more macros. Usually, a group of related macros is implemented by a single application.

You use a Macro Application macro by referring to its application name and the name of the macro you want to use. For example, SYS.DLL� XE "SYS.DLL" � is the name of one Macro Application that is included with Spinnaker. To reference the macro “time”, which returns the current time of day, we write:

	<$sys.time>

The general syntax for this type of macro is <$dllname.symbol>. Because the Macro Application interface is an open standard, third-party developers can create additional applications that supply macros. All that is required to use such an application is that you install its *.DLL file into Spinnaker’s working directory. Macros supplied by Macro Applications can be used in any HTML document you create and you can freely mix macros from two or more such applications in the same page.

Some macros accept parameters� XE "parameters" � that alter what the macro does. If a macro accepts a parameter, you simply supply the parameter following the symbol name. For example:

	<$servint.i header>

Page Applications differ from Macro Applications in that Page Applications are generally used to create entire HTML pages, rather than portions of other pages. For example, Spinnaker’s conferences and file libraries are implemented as Page Applications. However, Page and Macro Applications have a lot in common in that they can both supply macros; in some cases the distinctions between the two can be very minor.

Using SYS.DLL� XE "SYS.DLL" �

SYS.DLL is a Macro Application that implements several “system” related macros� XE "system related macros" �, including many that deal with the user file and user profiles. Some of these can be inserted directly into your documents as text, and others are designed to be used in conditional constructs. SYS.DLL macros� XE "SYS.DLL macros" � include:

Macro�Function��$sys.time�Returns the current time, in seconds past midnight��$sys.date�Returns the current date, in Julian date format��$sys.ftime�Formats a time according to a time-format string��$sys.fdate�Formats a Julian date according to a date-format string��$sys.ip�Returns the remote IP address of the current connection��$sys.morning�Conditional macro; true if the time is between 5:00am and 11:59am��$sys.afternoon�True if the time is between 12:00pm and 5:59pm��$sys.evening�True if the time is between 6:00pm and 11:59pm��$sys.night�True if the time is between 12:00am and 4:59am��$sys.ingroup�Figures out if the current user is a member of a security group��$sys.instring�Checks if one string is a subset of another string��$sys.random�Returns a random line from a text file��$sys.name�Returns the login name of the user, if one exists��$sys.field�Returns a named field from the user profile of the logged in user��$sys.setfield�Sets the value of a field in the user’s profile��$sys.incfield�Increments a numeric counter in the user’s profile��$sys.decfield�Decrements a numeric counter in the user’s profile��$sys.isuser�Checks to see if a user account exists for a particular user name��$sys.exists�Checks to see if a given file exists��Time and Date Macros� XE "Time and Date Macros" �� XE "Date and Time Macros" �

SYS.DLL’s time and date macros give you a way to insert the current time and date into your documents using a variety of possible time and date formats. You can also format times and dates returned by database lookups and application programs.

The <$sys.time> and <$sys.date> macros return the current time and date. If you use them this way…

	Hello! It’s <$sys.time> on <$sys.date> in Cleveland, Ohio.

…you’ll generate a Web page that looks something like this:

	Hello! It’s 55560 on 2450126 in Cleveland, Ohio.

The number 55560 is actually 3:26pm expressed as the number of seconds that have elapsed since midnight, and the number 2450126 is actually February 12, 1996 in Julian� XE "Julian Date" � date format. Spinnaker uses these “raw” formats as its standard way of representing time and date data internally, since it makes calculations involving dates and times simpler.

Of course, you probably want to display the time and date on your Web page in a more human-readable format. Fortunately, SYS.DLL provides two formatting macros that allow you to do just that. The <$ftime> and <$fdate> � XE "ftime macro" �� XE "fdate macro" �macros translate raw times and dates into a variety of formats that you define via special format strings. The syntax for <$ftime> is:

	<$ftime time-data format-string>

Time Data is a number representing the time in seconds past midnight. If you are displaying the current time, use the <$sys.time> macro here. You can also use macros that read time data stored in user profiles, databases or applications.

Format String� XE "Format String" � is a string of alphanumeric symbols that defines how you want the time displayed. The supported symbols include:

	H	Hour, in 12-hour format, using one or two digits as needed�	HH	Hour, in 12-hour format, using two digits (leading zero if needed)�	H24	Hour, in 24-hour format, using one or two digits as needed�	HH24	Hour, in 24-hour format, using two digits�	M	Minute, using one or two digits as needed�	MM	Minute, using two digits�	S	Second, using one or two digits as needed�	SS	Second, using two digits�	AM	Returns “AM” or “PM” as appropriate

Your format string can include any additional punctuation or spaces that you would like. Here are some examples showing what would be printed if the current time were 3:45:20 PM:

	<$sys.ftime <$sys.time> h:mm am>		3:45 pm�	<$sys.ftime <$sys.time> hh:mm:ss am>		03:45:20 pm�	<$sys.ftime <$sys.time> H24:mm>		15:45

Dates are formatted in a similar fashion using the <$fdate> macro. The syntax for <$fdate> is:

	<$fdate date-data format-string>

Date Data is the Julian representation for the date you wish to display. To display the current date, use the <$sys.date> macro.

Format String tells Spinnaker how you want to display the date. A wide variety of formatting symbols is available for dates, including:

	M	Number for the month, using one or two digits as needed�	MM	Number for the month, using two digits (leading zero if needed)�	Mon	Three-letter month name (Jan, Feb, Mar, etc.)�	Month	Full month name (January, February, March, etc.)�	D	Day, using one or two digits as needed�	DD	Day, using two digits�	Dth	Day, followed by the suffix “st”, “nd”, “rd”, or “th” as appropriate�	YY	The last two digits of the year (95, 96, 97, etc.)�	YYYY	The full four-digit year (1996, 1997, etc.)�	DOW	The day of the week as a three-letter abbreviation (Mon, Tue, etc.)�	DAY	The day of the week as a full string (Monday, Tuesday, etc.)

Using these symbols in various combinations, you can produce any date format you need. Here are some examples, assuming the date is March 5, 1996:

	<$sys.fdate <$sys.date> M-DD-YY>		3-05-96�	<$sys.fdate <$sys.date> MM-DD-YY>		03-05-96�	<$sys.fdate <$sys.date> M-DD-YYYY>		3-05-1996�	<$sys.fdate <$sys.date> D/MM/YYYY>		5/03/1996�	<$sys.fdate <$sys.date> Dow M-DD-YY>		Tue 3-05-96�	<$sys.fdate <$sys.date> Day, Month Dth, YYYY>	Tuesday, March 5th, 1996

Because Spinnaker lets you substitute macros for the date and time formatting strings, you can create flexible date and time formatting at your Web site. It is even possible to allow your users to choose their own date and time formats by including an option in your user profiles. We recommend creating a file that you include at the top of each document that contains times or dates; within that file, define macros such as:

	<$define $dateformat M-DD-YY>�	<$define $timeformat H:MM:DD am>

Later in the document, at the place where you wish to display a time or date, use:

	<$sys.ftime <$sys.time> <$timeformat>>�	<$sys.fdate <$sys.date> <$dateformat>>

Because the actual definitions for $timeformat and $dateformat are centrally located, you can modify the time and date formats for all your documents simply by changing your include file. Or, you could dynamically change them by querying a field in your user file; for example:

<$switch $sys.field dformat>�<$case EUROPEAN><$define $dateformat D-MM-YY>�<$case JAPANESE><$define $dateformat YY-MM-DD>�<$else><$define $dateformat M-DD-YY><$end>

In this example, we assume that the user file contains a field, dformat, that’s equal to “EUROPEAN” if the user wants European date formats� XE "European date format" �; “JAPANESE” for Japanese format� XE "Japanese date format" �s; and anything else for North American format� XE "North American date format" �. The $switch macro creates the <$dateformat> macro dynamically depending on this setting. (For more information about $switch, see page � PAGEREF SwitchMacro * MERGEFORMAT �34�; for information about creating and maintaining custom fields in your user file, see User Profiles on page � PAGEREF UserProfiles * MERGEFORMAT �18� and PROFILE.DLL on page � PAGEREF PROFILEDLL * MERGEFORMAT �53�).

The $morning� XE "morning macro" �, $afternoon� XE "afternoon macro" �, $evening and $night� XE "night macro" � macros are conditionals that you can use in <$if> and <$ifnot> statements to branch based on the time of day. For example:

	<$if $sys.morning> Good Morning! <$end>

User Information� XE "User Information Macros" �

SYS.DLL contains a number of macros that let you access the user name and profile� XE "user name and profile" � of the person who is requesting the page, assuming that person has a profile and has logged in. Use $sys.name and $sys.field to display the user’s login name and fields from their user profile. For example:

	Good morning! Your are <$sys.name> from <$sys.field location>.

Assuming a user is logged in and there is a field called “Location” in your user file, this code will return text such as “Good morning! You are Bob Harris from Middleburg, Ohio.” The <$sys.field> macro contains a field name from your user file as a parameter (it can contain the name of any custom field you create).

Note that there is not necessarily a logged-in user. If you have pages that don’t require security, they can be accessed without a name and password. If no logged-in user exists, the <$sys.name> and <$sys.field> macros return nothing. You can use $sys.name in an <$if> statement to test for the presence of a login; for example:

	<$if $sys.name>�	 Good morning! You are <$sys.name> from <$sys.field location>�	<$else>�	 I don’t know who you are – but good morning, anyway.�	<$end>

The <$sys.field> macro can be used on any Custom Field� XE "Custom Field" � that you have defined in your user database (for more information about creating custom fields, see page � PAGEREF CustomFields * MERGEFORMAT �19�). If you display a field of type String, SYS.DLL simply returns the alphanumeric data stored in that field. Spinnaker also lets you define fields of type Number, Boolean, Date and Time. If you use <$sys.field> on these types of fields, you will receive the following results:

Number� XE "Number field" � – Numbers are returned as a string of numeric digits (like 45 or 258 or 17112). Note that there is no comma included in larger numbers. The maximum number is 2147483648.

Boolean� XE "Boolean field" � – The boolean field returns the digit “1” if the field is True, or nothing if the field is False. You will usually reference boolean fields as part of a conditional statement; for example, <$if $sys.field adult> You are an adult <$else> You are still a minor <$end>.

Date� XE "Date field" � – Dates are returned in Julian format (a Julian date is expressed as the number of days that have past since a base date). Use the <$sys.fdate> macro to format a Julian into printable characters.

Time� XE "Time field" � – Times are returned as the number of seconds that have past since midnight. Use <$sys.ftime> to render the time value into a readable HH:MM format.

$InGroup� XE "InGroup macro" �

You can make your pages display different links or different HTML code depending on which Groups� XE "Groups" � the current user belongs to. The <$ingroup> macro is supplied as a means of making this determination. To use it, add the desired group name as a parameter. For example:

	<$if $sys.ingroup WebBeta>�	 We welcome you as a valued member of our Web Beta test team!�	<$else>�	 We welcome you as a valued member of the Public!�	<$end>

You can use any defined Group name as the parameter for $ingroup. You can also use and, or and parenthesis to construct queries based on multiple group names. Here are several valid examples:

	<$if $sys.ingroup WebBeta and Exec>�	<$if $sys.ingroup World or Courier>�	<$if $sys.ingroup (World or Courier) and WebBeta>

$InString

You can use the $sys.instring macro to determine if one string is contained within another string. InString takes two strings as parameters, separated by a vertical bar character. For example:

	<$sys.instring ohio|Cleveland, Ohio>

InString checks to see if the contents of the first string (to the left of the vertical bar) is contained anywhere within the second string (to the right of the bar). The comparison is case insensitive. In the example above, InString returns TRUE. Naturally, you can use InString in cases where one or both strings are macros.

Note that if the first string is blank, InString always returns true; if the first string is nonblank and the second string is blank, InString returns false.

$Random

$Sys.random returns either a random number in a specified range, or one line at random from a text file or another HTML document. To generate a random number, use this syntax:

	<$sys.random 1 100>

In this example, a random number between 1 and 100 is returned. To return a number in a different range, provide alternate starting and ending values.

Another way to use $random is with the name of a text file as a parameter. You can use this syntax whenever you want to insert text, links, images, or other information into a Web page at random from a predefined list.

Random with text files takes one parameter, which must be the name of an ASCII text file or an HTML document (you must specify either a full path, or a path that begins at the Spinnaker working directory). Random returns one line from the file at random. For example, suppose the file quotes.txt was a text file containing these three lines:

It takes a person wide awake to make his dreams come true.�640K memory ought to be enough for anyone.�A mind stretched to a new idea never returns to its original dimension.

If you place the macro <$sys.random quotes.txt> in an HTML document, you’ll get one of these three lines each time Spinnaker returns that page.

Each line in your text file is limited to 255 characters, but lines can contain any text or HTML codes you want, including Dynamic HTML. If you want to insert multiline sections of text at random, use <$F> macros (include macros) in your target file; for example:

	<$f htdocs\file1.htm>�	<$f htdocs\file2.htm>

This code will cause one of the two files to be embedded within the main document.

$Exists

This useful macro returns true or false depending on whether the filename given as its parameter exists. To use it, give a fully qualified filename as the parameter:

	<$if $sys.exists c:\spin\htdocs\mylist.htm>	 … <$end>

The information between the $if and $end tags is displayed only if the file exists.

Field Manipulation� XE "Field Manipulation" �

You can create special fields in your user records that are system-maintained� XE "field:system-maintained" �� XE "system-maintained field" �. Instead of filling these fields with data from a user-supplied form, you fill them by entering special macros into your pages. Sys.dll’s $setfield, $incfield and $decfield macros give you a way to do just this.

$Setfield� XE "Setfield" � takes a field name as its first parameter, followed by a string of text to assign to that field. Suppose you decided that you wanted to force each user on your system to be located in Cleveland, Ohio instead of their real location. If you place a statement like this on your home page…

	<$sys.setfield location Cleveland, Ohio>

…then each user who reads your home page will automatically have their Location field set to “Cleveland, Ohio”. This isn’t particularly useful, but let’s suppose you want to record the last time and date that a person used your home page. If you have custom fields called LastDate and LastTime, you can do something like this:

	<$sys.setfield LastDate <$sys.date>>�	<$sys.setfield LastTime <$sys.time>>

Since the <$sys.date> and <$sys.time> macros return the current date and time, this macro forces that information to be saved in the current user’s file. Later, you can display the data:

You last visited this site on <$sys.fdate <$sys.field LastDate> m-dd-yy>� at <$sys.ftime <$sys.field LastTime> hh:mm am>.

Notice how we use the <$sys.fdate> and <$sys.ftime> macros to format the date and time from the internally stored numerical format into an easy to read display format. In this example, we are assuming that LastDate and LastTime are field types of Date and Time, respectivley. (You can use <$sys.setfield> to store data in any type of field. For more information about storing data in fields of type other than String, see page � PAGEREF PostNonStringFields * MERGEFORMAT �56�).

$Incfield� XE "Incfield" � and $decfield� XE "Decfield" � let you increment and decrement fields that contain numbers. You can use these macros to set up personal hit counts (in other words, hit counts that are specific to a particular user). Here’s an example:

	You have been to this page <$sys.field pagecount> times before.�	<$sys.incfield pagecount>

In this example, we display the previous number stored in the Pagecount field, and then increment it by one. We can also increment (or decrement) fields by a specific value by adding that value to the tag:

	<$sys.incfield credits 100>

In this example, we increment a field called credits by 100. You can supply a third parameter to $incfield and $decfield if you want to set a maximum (or minimum) field value; for example:

	<$sys.incfield credits 100 5000>

Here, we increment the value of credits, but we don’t let thevalue exceed 5000 (in other words, if the old value is over 4900, we only increment it as far as 5000). With $decfield, the third parameter indicates a minimum rather than a maximum value; thus,

	<$sys.decfield credits 50 0>

reduces the credits count by 50, but does not allow the count to go below zero.

 <$Sys.incfield> is designed to work on fields of type Number, but it can also increment String fields if the string contains a number (expressed as a string of numeric digits). If you try to increment a field type other than Number or String, the result is unpredictable.

Usually, you’ll mark system maintained fields with the “User can’t update” flag when creating the custom field in your user file. This way, your users won’t be able to modify those fields manually, so you’re assured that the data found in them is accurate. A blank field is considered zero for the purpose of incrementing and decrementing it.

$Isuser� XE "Isuser macro" �

Sometimes you have a string of characters from a macro (or an application) that might be equal to a name in your user file, but might not. The $isuser macro lets you find out for sure. You pass the string as $isuser’s parameter, and it returns true or false depending on whether the string is equal to the name of a valid user.

$Isuser is useful in applications like WebMsg, where some messages might be from users who have accounts at your site and some might be from guest users or from people outside your site. If you know whether the message is from a user who has an account at your site, you can offer to display their user profile. Assuming that the macro <$fromname> contains the name of a user in WebMsg, you could write something like this:

	<$if $sys.isuser <$fromname>>

The text enclosed by $if and $end could contain a link to the PROFILE.DLL� XE "PROFILE.DLL" � application for displaying that user’s public profile.

Using HITCOUNT.DLL� XE "HITCOUNT.DLL" �

The HITCOUNT program gives you a way to keep track of the number of times a page has been requested or “hit”. Hitcount contains only one symbol, called text, which takes a name as a parameter; i.e. <$hitcount.text name>. For example:

	This page has been requested <$hitcount.text homepage> times.

The tag <$hitcount.text homepage> returns a number indicating the number of times that $hitcount.text has been called with the name homepage. Referencing the value also increments it, so the next time the page is requested, the number goes up by one.

Notice that Hitcount really keeps track of the number of times it has been called with a particular name (in this case homepage). This gives you more flexibility than actually tracking hits based on the page itself, because you can use the same name in different pages if you wanted to keep an aggregate count of hits on related pages. To maintain separate hit counts� XE "Hit count" � on different pages, simply use a different name.

Hitcount supports three optional parameters. If you use the parameter nofmt, Hitcount doesn’t format the resulting number by adding commas after every 3rd digit. If you specify noinc, Hitcount displays the value but doesn’t increment it. You can use this feature if you want to show hitcounts for pages without actually affecting them. Finally, nodisp can be used to increment the hitcount without displaying it. To use one or more parameters, place them after the name in your URL:

	This page has been requested <$hitcount.text homepage noinc> times.

Hitcount stores your hit information in a file called HITCOUNT.INI, which you will find in your Windows program directory. If you ever need to manually adjust the hit count for a particular page, you can edit this file with a text editor.

Using SERVINT.DLL� XE "SERVINT.DLL" �

The SERVINT module provides access to server-related information. It also implements a convenient macro library that is controlled from the Options screen on the Web server itself (rather than through $define statements).

<$servint.hfield field substring>�This is a true-false macro that you can use to examine information contained in the header field� XE "header field" � of the current http request. In simpler terms, this macro lets you make decisions based on the type of browser� XE "browser type" � at the remote end of the connection.

Web browsers typically supply a header record that contains multiple fields. One field, called USER-AGENT� XE "USER-AGENT field" �, contains the browser’s name and version number. The macro <$servint.hfield field substring> returns true if the data in substring is contained anywhere within the header field field. The comparison is not case sensitive.

Here is an example of how you might use this macro to find out whether the user has a Netscape browser. Because Netscape� XE "Netscape" � always includes the text “Mozilla� XE "Mozilla" �” in its USER-AGENT field, we can test for Netscape’s presence by looking for that string:

	<$IF $SERVINT.HFIELD USER-AGENT MOZILLA>�	 <$define $tables>�	 <$define $jpeg>�	 <$define $netscape>�	<$END>

If the test for Netscape is true, we define the macros $tables� XE "tables" �, $jpeg and $netscape. Later in our document, we can use a statement like <$if $tables> or <$if $netscape> to control specific blocks of HTML code. This is better than using the <$if $servint.hfield...> statement throughout our HTML document, because we can modify our code to support new browsers later simply by adding new USER-AGENT tests.

You might want to create an include file that contains a series of USER-AGENT tests like this one. That way, you can develop a library of macros that are appropriate for your individual site.

You can use <$if $servint.hfield...> to test any header field. Another field you might want to test is REFER, which often contains information about the last page a browser was on before requesting the current page. Consult a browser technical manual for a listing of other possible fields.

<$servint.i token-name>�Spinnaker supports a list of macros right in the server’s configuration program. Although server-based macros are similar to $defines, they are somewhat more convenient to use because you can enter and change server macros without editing a text file.

To set up a server-based macro, click the Settings option (the open-book icon) on Spinnaker’s main window and go to the Includes� XE "Includes" � tabstop:

	�

Use the Edit, Add and Delete buttons to maintain your list of includes. As you can see, each include has a token name and a string of text. When you use the <$servint.i token-name> syntax in an HTML document, Spinnaker replaces the tag with the text for that token. For example:

	<$servint.i footer>

If our server includes were defined as above, this statement would be replaced with the text “</body></html>“. Includes can contain text, HTML tags, or macros; if you want to make a macro that includes a file, you can use <$f filename>.

<$fileinfo date>�<$fileinfo time>�These macros are not strictly part of SERVINT.DLL, but we include them here because they belong in the same family of server-information macros. You can use <$fileinfo� XE "fileinfo" �> to insert the date or time that your HTML document was last modified. Spinnaker obtains this information by reading the date and time directly from the Windows directory entry for your file. For example:

	This page was last modified on <$fileinfo date> at <$fileinfo time>.

Page Applications

A Page Application� XE "Page Application" � is a program that is designed primarily to produce entire HTML documents, rather than to supply small parts of other documents. Some of the Page Applications that are included with Spinnaker are WebMsg (conferencing), WebFile (file libraries), and ISMAP (for image map processing).

Page Applications can supply macros, just like Macro Applications. The major difference lies in the way a Page Application is activated. Page Applications are activated by requesting a URL that contains the application’s name and a series of parameters. For example, the WebMsg application, which is implemented in a program file called WEBMSG.DLL, can be activated with a URL such as this:

	http://mysite.com/$webmsg.read.general.1

The syntax “$webmsg” tells Spinnaker to load and execute the WEBMSG.DLL application. The rest of the URL is a command line for WebMsg to process. In this case, the command tells WebMsg to read message number 1 on a conference called “general”. WebMsg actually produces an entire HTML document based on this command.

WebMsg, WebFile, and other Page Applications are documented fully in their own chapters; see the table of contents for more information..

Page Application URLs

When you want to use a Page Application on your Web site, you’ll typically include a link to a URL such as the one shown above in one of your pages. For example, here is a link from our site that generates a list of available conferences:

<dt>�Message Conferences...�<dd>Interactive Message Conferences (shared with our Support BBS).

This code generates a link which, when selected, generates a new page with a list of message conferences.

Occasionally, you might want to insert the results of a Page Application command directly into a document (just like a macro). Spinnaker provides you with a way of doing this via the <$RUN> directive� XE "RUN directive" �. Here’s how you might use <$RUN> to render the same conference list as above:

	<$RUN $webmsg.conf.*>

This doesn’t generate a link; instead, it actually generates the entire conference list and inserts it into your document. You can use the <$RUN> directive inside any HTML document that you create.

We recommend that you place a forward-slash before the application name when you use application URLs in your documents (for example, use instead of). From the Web browser’s standpoint, all “applications” look like files in your Spinnaker home directory; should you attempt to use an application from a document that is not in your home directory, the Web browser will send a URL that includes that directory name. The forward-slash tells the browser that the command exists in the root directory of your Web server, so the browser ignores the current directory name.

��

� TC "User Profiles Application" \l 1 �� XE "User Profiles Application" � The PROFILE.DLL� XE "PROFILE.DLL" � application gives you a way to display user profiles (that is, information from your user file). It also provides a means for your users to create and edit their user profiles using HTML forms.

Unlike the $SYS.DLL application, which only displays information about the currently logged-in user, Profile can look up and display any user in your database. Of course, only those fields you wish to display can be viewed; private fields (like address and phone number) cannot be displayed if you don’t explicitly add those fields to the templates that you create.

Profile is invoked with a URL such as ; make sure the PROFILE.DLL file is properly installed in Spinnaker’s working directory. Valid commands include Show, New, Post, List, Password and Who.

Command Name�Show��Parameters� [.Template]��Default Template�profile\show.htm��Form�No��Examples�$profile.show�$profile.show.custom��The $profile.show command generates an HTML document containing information about the current logged-in user. Although $profile.show duplicates some of the functionality of the SYS.DLL application, it’s more efficient to use $profile.show when you want to display a large number of fields from the current user’s account. The primary use for this command is to show users their current profile, and to generate forms that users can submit to the $profile.post command for updating their profile.

Profile always looks for template files in a subdirectory of the Spinnaker working directory called “PROFILE”. (This subdirectory is created for you when you install Spinnaker and several default templates are supplied). By default, Show uses a template file called SHOW.HTM� XE "SHOW.HTM" �. If you want to use a different template, you can supply the template name as the command’s second parameter, as in the second example above, where CUSTOM.HTM is the template name (CUSTOM.HTM must exist in the PROFILE directory).

Within your template files, use the macro <$FIELD FieldName> to display information from a field in the user’s profile; use <$FIELD LOGINNAME> or simply <$NAME> to return the user’s login name.

In this example, we use our template to construct a form that both displays the user’s profile and offers a chance for updating it:

(1) Login Name: <$field loginname>�(2) Real Name: <input size=25 name="REALNAME" value="<$field realname>">�(3) Location: <input size=25 name="LOCATION" value="<$field location>">

The <$field> macro can display any type of field. For more information about how non-String fields are displayed, see page � PAGEREF DisplayNonStringField * MERGEFORMAT �43�.

Show works only if there is a currently logged in user. If there is no current user, Show will return an error code of 401� XE "error code 401" � (Authorization Failed� XE "Authorization Failed" �). Web browsers will respond to this code by prompting the user to enter a name and password. If no valid name and password is supplied, then the command fails.

Show only displays information about the current user. You can think of it as a “Show me my profile” command. Profile provides another command, List, that you can use to look up and display information about any user on your site.

Command Name�New��Parameters�Result File��Default Template�none��Form�Yes��Examples�$profile.New.OK�$profile.New.Thanks��The New command accepts a form containing a new user profile and adds that profile to your user database. New is always used as the target for an HTML form, rather than as a link. Here is a simple example:

<FORM METHOD=POST ACTION="$PROFILE.NEW.START">�(1) Login Name: <input size=25 name="LOGINNAME" value="">�(2) Password: <input size=25 name="PASSHASH" value="" type=password>�(3) Real Name: <input size=25 name="REALNAME" value="">�(4) Location: <input size=25 name="LOCATION" value="">��Verify your password by re-entering the same password that you typed in line 3:
�Password: <input size=25 name="VERIFY" value="" type=password><p>��<INPUT TYPE="submit" VALUE="Submit Profile">�</FORM>

Three fields are required to be present in a new user application form: LOGINNAME� XE "LOGINNAME" �, which must contain a unique login identifier; PASSHASH� XE "PASSHASH" �, which contains the user’s password; and VERIFY� XE "VERIFY" �, which must contain the same string as PASSHASH (by requiring the password twice, we verify that it was typed correctly). Everything else in this form corresponds to a Custom Field in the user file. You can create as many custom fields� XE "custom fields" � as you like via the Users and Groups Configuration program. Custom fields must have the “User can modify” or “User can initialize” attribute set in order to be included in a new user registration form.

You are not limited to text input fields in your new user registration form; picklists� XE "picklists" �, radio buttons� XE "radio buttons" �, and other kinds of inputs may also be used. An example form is included with Spinnaker (NEWUSER.HTM� XE "NEWUSER.HTM" �).

Assuming everything is correct, posting this form results in the creation of a new user account� XE "new user account" �, and Profile returns the document named as the second parameter in the command (in this case, it returns START.HTM� XE "START.HTM" �, which must exist in the PROFILE subdirectory). Note that the account is not actually “logged in” until the user requests a page that requires some sort of authentication. Typically, your return document would contain a link to a page that requires a valid account (i.e. a page from a directory that has some security group assigned to it).

If an error occurs, Profile returns the document PROFILE\ERROR.HTM� XE "ERROR.HTM" � instead. Profile reports an error if the LOGINNAME or PASSHASH fields are left blank, if the LOGINNAME is the same the name of an existing account, or if the value typed for PASSHASH does not exactly match the value in VERIFY. You can modify the ERROR.HTM document if you wish to change any of the error messages.

Login names are automatically converted to all-uppercase when the account is created. Passwords are converted to uppercase and then hashed according to a complex internal formula. Hashing� XE "hashing" � affords an additional level of security. Because a clean-text version of the password is not kept in your user file, it is impossible for anyone to obtain your users’ password� XE "password" �s. On the flip side, it’s impossible to display a user’s password on a form or in a document (in other words, the macro <$sys.field passhash> is not valid). However, Profile provides a separate Password command for changing existing passwords.

Non-String Fields� XE "Fields:binary" �� XE "Non-String Fields" �

PROFILE.DLL can store data in any Custom Field that Spinnaker creates, including String, Number, Boolean, Time and Date. For String type fields, you (or your user) simply types in the literal data to be stored in that field. (Spinnaker automatically truncates the string if it’s longer than the space allocated for it in the user file).

For non-String field types, you need to follow some conventions to ensure that your data is properly saved. Here are the rules for each type of field:

Number� XE "Number field" � – To store a number, you simply type in a string of numeric digits. Leading zeros and whitespaces are allowed, but other non-numeric characters (such as commas) are not. The allowed range is plus or minus 2147483648.

Boolean� XE "Boolean field" � – Boolean values are only 1 character long. Use the letter “Y” or “T” or the digit “1” to indicate True; anything else indicates False. It is best to encapsulate Boolean responses in a radio or picklist control rather than depend on your users to type in the response themselves.

Time� XE "Time field" � – To input a time value, you must type the time in HH:MM:SS format (hours, minutes, and seconds). For hours, you must use 24-hour format. Seconds are optional and will default to zero if not provided. (Note that you can display time values in any format you want once they are input; see the <$sys.ftime> macro for more information).

Date� XE "Date field" � – Dates can be specified in either MM-DD-YY or MM-DD-YYYY format, or as Julian� XE "Julian" � values. (If you use a two-digit year, Spinnaker adds 1900 to the number). The Julian format is supplied primarily so you can copy Julian dates directly from other sources. As with times, you can display dates in any format you choose once they are input (see <$sys.ftime> for more information).

The DEFAULT Account� XE "DEFAULT Account" �

If your user file contains an account called DEFAULT, Profile uses that account as a template when creating new accounts. In other words, any fields which are not explicity specified on the new user registration form are filled with data from DEFAULT. Particularly, Profile reads the Security Groups from the default account and copies them to the new account, so your new accounts can automatically have security groups.

The default account is also useful in cases where you want to initialize protected fields (like counters). Use the Users and Groups configuration program to fill in these values.

Command Name�Post��Parameters�Result File��Default Template�none��Form�Yes��Examples�$profile.Post.OK�$profile.Post.Thanks��Post is similar to New, except that Post lets an existing user update his or her profile. A user must already have logged on to your site before this command can be used, and users can only modify their own profiles.

To use Post, you submit a form that’s very similar to the one submitted for new user registration, except that the command NEW is replaced with POST. The form can contain any field execpt LOGINNAME and PASSHASH. To allow someone to change the value of an existing field, you should initialize the form with the current value of that field by using a <$sys.field> macro. For example:

(3) Real Name: <input size=25 name="REALNAME" value="<$sys.field realname>">

It’s not necessary to supply the name of each available field in your form. Fields that are not supplied are not updated. For more information about posting to non-String field types, see page � PAGEREF PostNonStringFields * MERGEFORMAT �56�.

You cannot modify the LOGINNAME or PASSHASH fields via the Post command, but passwords can be modified with the Password command. Also, you cannot modify a custom field unless it has the “User can change” attribute associated with it (if you attempt to modify any of these illegal fields, the changes are simply discarded).

If the command is successful, Post returns the specified return document from your PROFILE directory. If the post fails, the ERROR.HTM document is returned instead.

Command Name�List��Parameters� [.Template][.Range][.Start]��Default Template�profile\list.htm��Form�No��Examples�$profile.list.list.10�$profile.list.myfile.25.S��List gives you a way to access and display information from any account in your system; it also lets you generate lists of user accounts with several accounts listed per page.

The default template is PROFILE\LIST.HTM� XE "LIST.HTM" �, but you can override this by typing a different template name (as in the second example above). You must place your template in the PROFILE\ subdirectory and use the .HTM file extension.

Generating a List

The Range and Start parameters specify that you want to list a particular number of accounts per page, starting at a particular alphabetical location. Start is typically a capital letter from A to Z, but it can also be several letters indicating a partial username (like JOH to start listing from that alphabetical location).

To actually generate the list, you use a <$while $list> statement within your template file. Each time through the list, a new account is made active; use the convention <$pfield fieldname> to extract the user information:

<$while $list>� <$pfield loginname> from <$pfield location>
� <$count>�<$end>

<$Count> is a special directive that tells the Profile application to “count” that account as having been listed. If you choose to filter out certain accounts from your listing (via <$if> statements, for example), you can still maintain the same number of accounts per page, because only those loops where the <$count> macro appears are counted.

The <$while> loop ends when Range accounts have been listed, or when the end of the file is reached. You can determine which of these is the case by placing an <$if $more> statement at the end of your loop; to continue the listing, submit a form containing the fields RANGE and LOGINNAME, using <$range> and <$pfield loginname> as the default values (see our sample template for an example).

Notice that the macro for listing information in a list is <$pfield> rather than <$field>. The difference in names provides a measure of security against the possibility that the wrong form will be used for listing a user profile.

Displaying a Profile

To display an existing profile, you submit a form to the List command that contains a LOGINNAME field. For example:

<form method=POST action="$profile.list.profile">�<input size=25 name="LOGINNAME" value="<$pfield loginname>" type=hidden>�<input type=submit value="Profile"></form>

If you’re listing users, you can include this form inside your <$while $list> loop and automatically fill in a value for the username, as we’ve done here. You can also place this form on a page without a value for the username and have users type in a name to look up.

This command will work even if the LOGINNAME field is filled with a value that doesn’t exactly match a record in your user file. In this case, the closest record will be displayed.

Command Name�Who��Parameters� [.Template]��Default Template�profile\who.htm��Form�No��Examples�$profile.who�$profile.who.list��The Who command� XE "Who command" � shows you who is currently logged in to Spinnaker. (Since all HTTP transactions are transient, Spinnaker considers a user “logged on” if they have requested a page within the last 15 minutes).

Who works just like List, except that it does not use a range, a starting address, the <$count> macro, or the <$more> macro. Who lists all the currently logged-in users on one page; use the <$while $list> construct to loop through each user. Within your loop, you can use the <$pfield> macro to display field data from each user’s record, the same way you do in your List template (in fact, the templates for List and Who can be nearly identical).

Who supports several additional macros. The first, <$address>, returns the IP Address� XE "IP Address" � of the logged-in user. An IP Address is a four-part number representing the internet address from which the user’s last request originated; for example, 207.54.137.11.

The <$known> and <$anon> macros display the total number of known users (users who have logged in with a name and password) and anonymous users, respectively.

Here’s an example of a Who template that incorporates these features:

There are <$known> know user(s) and <$anon> anonymous user(s).

<$while $list>� <$pfield loginname> from <$pfield location> on <$address>
�<$end>

As with the List command, you can display additional fields or insert a form to display the user’s entire online profile.

Command Name�Password��Parameters�Result File��Default Template�None��Form�Yes��Examples�$profile.Password.OK��The Password� XE "Password" � command lets an existing user change his or her password.

Password is submitted along with a form that contains the user’s old password, the new password, and a VERIFY field that contains a copy of the new password. This example is included in the file CHPASS.HTM:

<FORM METHOD=POST ACTION="$PROFILE.PASSWORD.OK"><pre>�(1) Type your OLD password here:� <input size=25 name="OLDPASSWORD" value="" type=password>��(2) Type your NEW password here:� <input size=25 name="PASSHASH" value="" type=password>��(3) VERIFY your new password by re-typing it here:� <input size=25 name="VERIFY" value="" type=password>��</pre>�<INPUT TYPE="submit" VALUE="Submit Password">�</form>

��

� TC "Image Maps" \l 1 �� XE "Image Maps" �An image map is a picture that contains two or more links. By clicking on a specific region of the picture, users can link to different parts of your Web site. An example of an image map is a clickable flow chart or any picture that contains a link. Spinnaker supports image maps via an external Page Application called ISMAP.DLL� XE "ISMAP.DLL" �.

To create an image map, you need two things: a link on a web page, and an map file.

The Link

The first thing you need is a link on a web page. The URL is the application name $ISMAP followed by the name of the map file (which we’ll cover below). Follow this with an image name that includes the ISMAP tag. A typical link might look like this:

Like any other image link, you can include the border, width, and height within the tag if you wish.

The Map File� XE "Map File" �

The next thing you need is an image map file. An map file is a text file that defines clickable regions within the image. Map files are always stored in the Map Files directory that you specified when installing Spinnaker.

Each line starts with a word to indicate the type of region. Three types of regions are supported: rectangle (rect), circle (circle), and polygon (poly). After the region type is the file or HTTP request that should be sent when the user clicks on that region (if you type a filename, it is best to include the full path to the file). Finally, the coordinates of the region are specified. For a rectangle, you specify the top-left and bottom-right corners. For a circle, you specify the origin of the circle, and any point on the edge of the circle. For a polygon, you specify the vertices of the polygon in clockwise order. Up to ten vertices per polygon are supported. Here are some examples...

A rectangle with the upper left coordinate at 22,25 and the lower right coordinate at 326,108:

	rect w:\httpd\company.htm 22,25 326,108

A circle with the origin at 313,28 and a point on the edge at 313,44:

	circle w:\httpd\help.htm 313,28 313,44

A polygon with vertices at 12,15 and 68,25 and 115,80:

	poly w:\httpd\home.htm 12,15 68,25 115,80

You can also use the default tag to specify a file that is sent if the user clicks on a region that is not defined:

	default c:\httpd\sl\company.htm

The result of clicking on an image map can either be a local file, or an HTTP request. If you wish to link an image map region directly to an HTML file on your local system, use the complete path and filename, as in our examples above. In cases where you wish to link to a file on another system, you can use the HTTP address instead:

	poly http://www.searchlight.com 12,15 68,25 115,80

This works with any HTTP request, even requests for files on your own system. (It works for FTP requests and other types of URLs, too). You must use this syntax if you want an image map area to run a command from a Spinnaker application module (like WebMsg).

If this seems confusing, don’t worry. There is a much easier way to create image maps. Several third party programs exist that allow you to actually “draw” the regions right on your image and then create the requied map file for you. Check our support system or a Web search engine to locate some examples.

A Few Tips

The ISMAP application can process rectangle regions faster than polygon regions. If you have a polygon region, consider using multiple rectangle regions instead.

You can overlap regions. If a hit is within two regions, the first one in the map file will be used. For example, you can have a circle region within a rectangle region.

When a browser retreives a file from an image map, it doesn’t know where the file was really located in your directory tree. This can cause problems with relative links. To solve the problem, use the <base> tag in any files with links from image maps. The <base> tag is used to specify the exact URL to a file. For example:

	<base href=http://www.mydomain.com/subdir/filename.htm>

You can find out more about the <base> tag and about image maps by consulting an HTML reference book or by examining the source for Web pages that contain image maps.���

� TC "Conferences" �This chapter serves as reference for WebMsg� XE "WebMsg" �, Spinnaker’s Searchlight BBS-� XE "Searchlight BBS" �compatible conference application. Before you try to use WebMsg, make sure that your Spinnaker Web Server is installed and able to serve HTML documents. If it isn’t, review the installation instructions for more information. If Spinnaker doesn’t work, then WebMsg won’t work, either.

Installation

If you chose to install WebMsg when you installed Spinnaker, WebMsg is almost ready to use. The following paragraphs provide detailed information about how WebMsg should be installed, in case you need to install it manually or install updates in the future.

Step 1: Install the WebMsg Files

WebMsg consists of three executable files called CONFMAN.EXE, WEBMSG.DLL and SL.DLL. Be sure that these files exist in your Spinnaker working directory (the same directory where your SPIN.EXE file is installed). If you don’t already have one, create a shortcut or program icon for ConfMan and place it on your desktop or in your Spinnaker program group.

WebMsg uses template files to generate its pages. Make sure that your Spinnaker directory has a subdirectory called “WebMsg” containing these templates (they should be there unless you specifically did not install them). You can modify these HTML documents when you want to change the style or appearance of WebMsg pages.

Step 2: Make a Node for WebMsg

WebMsg acts like a node in a multiuser Searchlight BBS system. Before you use it, you have to make sure that it has access to a Searchlight BBS home directory and the other support files for Searchlight BBS.

Only one home directory is required for WebMsg, regardless of the number of simultaneous requests it services as part of your Web site. The same home directory can also be shared with the WebFile application.

If You Run a Searchlight BBS System�If you want to use WebMsg with an existing BBS, you have to create a new node specifically for WebMsg. You do this the same way you would create any other node on your BBS; make a working directory, copy a CONFIG.SL2 file into it, and adjust the node number to a proper value.

If your Searchlight BBS system resides on a different computer than your Web server, you’ll need to use a file-sharing LAN to share the file libraries and databases between the two applications. You can run Searchlight BBS and Spinnaker on the same computer if you use the Windows version of Searchlight BBS (version 5.0 or later).

Caution: Before you run WebMsg, test the node you have set up for it by trying to run Searchlight BBS from that home directory. Make sure you can log in and access your conferences. If you are using a file-sharing network, you may need to familiarize yourself with some of the concepts and pitfalls of a LAN� XE "LAN" � installation. In particular, you should make sure that the drive letter of the drive containing your Searchlight BBS data files is the same on every machine in your network. Needless to say, if you can’t get Searchlight to work with your new node, WebMsg won’t work, either. Your Searchlight manual contains more information about mulituser and LAN configurations.

You do need to have a multiuser version of Searchlight in order to share conferences with WebMsg. If you have a single line version, or if you are already using the maximum number of nodes which your license allows, you need to upgrade your Searchlight BBS license. Contact us for upgrade information.

If You Don’t Run a BBS�If you don’t have a Searchlight BBS system, you don’t need a LAN or a file server to use WebMsg. A default Searchlight home directory called “SLBBS� XE "SLBBS directory" �” is installed when you install Spinnaker. To use this directory you simply need to make sure it is selected when you run CONFMAN.

Step 3: Set Your Home Directory

ConfMan� XE "ConfMan" � is the Windows-based application program that you’ll use to create, modify, delete, and maintain security on your WebMsg conferences. Launch the ConfMan application program by clicking its icon or by typing “CONFMAN” at a command prompt.

The first time your run ConfMan, you should check the Searchlight Home Directory setting (click File, then Preferences). If you have a Searchlight BBS system already installed and you’ve created a node for Spinnaker, enter the directory path to that node’s home directory here. If you like, you can click on the “…” button to select a home directory from a list of available files (you must actually double-click the CONFIG.SL2 file to make your selection).

If you don’t have a copy of Searchlight, use the default SLBBS directory described above (it may already be installed).

Step 4: Review Your Conference List

WebMsg is now installed. But before you can use it, you need to set up some conferences.

If this is a new installation, you need to create new conferences. You do this through the ConfMan program; see Conference Maintenance in the next section for details.

If you already have conferences from an existing Searchlight system, you can use those conferences with WebMsg. However, before WebMsg can use your conferences, you must configure them either as public or as available to specific security groups, users, or IP addresses. Again, you use the ConfMan program. Bear in mind that by default, none of your conferences are considered available; before you can do anything with WebMsg, you need to select some conferences and configure them appropriately. See the next section for details.

Step 5: The Test

Now we’re ready to test WebMsg. Make sure you’ve carefully followed the steps above. Start Spinnaker. Then, from a Web browser, type in this URL, substituting your domain name or IP address for mydomain.com:

	http://mydomain.com/$webmsg.conf.*

If all has gone well, you should get a page that contains a list of your conferences. (If you have a lot of conferences, this could take a few moments). Take five, slap yourself on the back, and say something inspirational such as “Houston, the Eagle has landed!”. (Or, better yet, “I love those Searchlight guys!”).

If it didn’t work, go back and make sure that Searchlight itself can run and list conferences in the node you’ve set up for WebMsg. Make sure that WEBMSG.DLL and SL.DLL are in your Spinnaker working directory and that your template files are properly installed. If all else fails, contact us for help.

Conference Maintenance� XE "Conference Maintenance" �

ConfMan� XE "ConfMan" � is the configuration program you’ll use to create, modify, delete, and assign security to your conferences. If you are familiar with Searchlight BBS, you’ll find that ConfMan allows you to edit many of the same conference attributes as Searchlight’s configuration utilities.

If ConfMan is not already running, start it by double-clicking its icon or by typing “CONFMAN” at a command prompt. You should see a list of any existing conferences on the left, with options screens on the right:

�

The default view shows both the short conference name and long description. You can click the view menu if you’d like to view only the short names or only the descriptions.

Adding New Conferences� XE "Conferences:adding" �

From the Conference menu, choose Add Conference. ConfMan displays this dialog:

�

Choose a one to eight character conference name. The name must not be the same as an existing conference, and it must not contain any characters that cannot be used in a filename (i.e. no slashes or punctuation marks). This is the conference name or “short name” that you’ll use throughout WebMsg to refer to this conference.

WebMsg and Searchlight let you choose a directory in which to store the database files associated with each conference. If you have multiple disk drives or multiple file servers, this lets you balance the load of many conferences across your available storage. Type in the name of a directory where you’d like to store the data files for your new conference. If you don’t have a preference, you might want to choose your Searchlight home directory, although it is recommended that you set up a new directory specifically for conferences. If you have a prefered conference path from an existing Searchlight system, you can use that.

When you click OK, ConfMan creates the conference and adds ito the your conference list. Now you can modify the conference by clicking on it and using the tabbed fields in the right-hand portion if ConfMan’s display.

Modifying Conferences� XE "Conferences:modifying" �

Choose a conference by highlighting its name. You can modify conference attributes and security in the right-hand portion of the ConfMan window by selecting the General or Security tabs.

General Information

Each conference can have a description and a number of preference settings associated with it. Add or modify these settings under the General tab.

Description is a one to 40 character alphanumeric field that you can use to describe the conference. You can access the description from your templates and have it appear in your HTML documents.

Maximum Messages� XE "Maximum Messages" � and Message Length� XE "Message Length" � work to control the maximum size of messages and of the entire conference. The first value is the largest number of messages that can be posted; the second is the largest size of a single message (in lines). The largest possible message is 1000 lines. (Note: it’s up to you to design your input forms so that they do not exceed the Message Length. If they do, and users enter more than the maximum number of lines, WebMsg will automatically truncate the message).

Allow Anonymous� XE "Anonymous messages" �� XE "Allow Anonymous" � controls how users who post messages on the conference can identify themselves. If this field is checked, any user can post a message with any arbitrary name in the From field. WebMsg does not check that the From name is really that person’s name, so users can create alias names� XE "alias names" � whenever they post a message. This field also lets your system support the posting of messages from anonymous users who have not created an account.

If Allow Anonymous is unchecked, WebMsg will always fill in a registered user’s real name in the From field when posting a message. (However, unregistered users can still post with arbitrary names; if you want to eliminate posts with arbitrary names alltogether, you need to assign security to the conference such that unregistered users cannot post messages).

If Auto Purge� XE "Auto Purge" � is checked, WebMsg will automatically delete old messages when the Maximum Messages limit is reached. In other words, if Maximum Messages is set to 100, and 100 messages have been posted, posting the 101st message causes the first message to be deleted. Thus, the conference always contains 100 messages, but only the last 100 messages posted.

If this field is unchecked, WebMsg does not automatically purge old messages. If the Maximum Messages value is reached, then no new messages may be posted on that conference.

The Compress� XE "Compress" � setting tells WebMsg to store message texts in a compressed format. Compression saves disk space, but increases slightly the amount of time it takes to save and retrieve messages. We recommend using this setting unless you are running Spinnaker on an older, slower system.

Security� XE "Conference Security" �� XE "Security:for conferences" �

Each conference can be made secure by restricting the groups, users, or IP addresses that can use that conference. There are three settings for each conference: one for reading, one for writing, and one for performing moderator functions (editing and deleting). Thus, it is possible to create conferences that can be read but not posted-to, or conferences where users can post new messages but not read existing ones. You can also assign moderators to a conference who have the right to remove or change existing messages.

The security settings for WebMsg are similar to those for HTML directories in Spinnaker. Select the desired conference on the left, then select the Security tab on the right. If the “Enforce Security” box is checked, then WebMsg will treat the conference as secure; if you want to create a completely open conference, simply uncheck this box. (Note: all conferences start out with Enforce Security checked).

To create a secure conference, check Enforce Security and then check Read, Write or Moderate. Use the dialog at the bottom of your screen to decide which groups, users or IP addresses are permitted access. Notice that WebMsg keeps separate settings for each of the three types of security, so when you are done making one setting, click another one and make the appropriate settings for it.

Administrator� XE "Administrator" �

WebMsg supports the concept of a System Administrator� XE "System Administrator" �. Someone with Administrator security level overrides all other security levels and is allowed full access to read, write, modify and delete any message from any conference. If you wish to use the Administrator capability, check Allow Administrator and then select which groups, user names or IP addresses are allowed to be Administrators. Please not that the Administrator setting is global to the entire WebMsg system (it is not specific to the particular conference that’s highlighted at the time you make the settings).

Using WebMsg

Commands

During step 5 of our installation, we executed a simple WebMsg command. We did it by sending the URL “$webmsg.conf.*” to our Spinnaker Web server. Spinnaker knows that this is a WebMsg command because of the “$webmsg” part of the URL; it forwards the entire command to WebMsg through a special program interface called CGI-DLL� XE "CGI-DLL" �. Then, WebMsg creates an HTML document with your conference list in it. That’s the document your browser receives in return for making the initial request.

All WebMsg commands follow the same syntax of “$webmsg.” followed by one or more parameters. We’ll cover the complete command list shortly. First, though, we’ll have a look at the document template concept.

Templates� XE "Templates" �

When you ran the $webmsg.conf.* command earlier, you received an HTML document that was legible, but hardly stylish or attractive. If you’re a computer programmer, you probably don’t mind. On the other hand, if you’re somewhat more artistically inclined than that (in fact, if you’re anything but a computer programmer), you’re probably wondering: is this the only format I can have for my conference list? What if I want to add graphics or change the layout? For that matter, you may have noticed that your list isn’t exactly the same as the one on our Web site. Yes, you can modify the format of your WebMsg output very extensively by modifying the template files that WebMsg uses to generate its output.

A template file is like a guide or a script that WebMsg uses when it creates a page. In fact, template files are very similar to HTML documents, except that they contain special non-HTML tags that tell WebMsg where to substitute specific information. Your new Spinnaker installation contains default templates for WebMsg in a directory called WEBMSG.

To understand how templates work, use a text editor (like Notepad) to examine the file WEBMSG\CONF.HTM� XE "CONF.HTM" �. This is the template that WebMsg uses when you give it the $webmsg.conf.* command. Within CONF.HTM, you’ll see a number of lines of plain text and some lines with HTML tags. Right off the bat, you can edit any plain text you see, add text, or add HTML tags. In fact, you can type anything that you can type into a regular HTML document, including the Dynamic HTML macros and constructs you learned about in the previous sections.

You’ll also see something like this in the template:

	<$while $list>�	 <A HREF="$webmsg.list.<$name>.-12.12"><$title> �	 <i> <$total> Messages</i>
�	<$end>

This is where WebMsg actually generates the list of your conferences. Let’s take a closer look at what’s going on here.

First, let’s examine the tags <$name>, <$title> and <$total>. These look like macros, don’t they? In fact, that’s exactly what they are. (If you don’t know what we mean by “macros”, please go back and read about Dynamic HTML in the previous section). These three symbols stand for the eight-character conference name, the 40 character conference description, and the total number of messages in the conference, respectively. When WebMsg runs, it replaces the symbols with actual data.

Macros like <$name> and <$title> are specific to WebMsg (and in some cases specific to a particular WebMsg command). We can’t use these macros in an arbitrary HTML document (they’re only valid when used in one of the WebMsg template files.

Perhaps the most important statement in this template is <$while $list>. This is the beginning of a “loop” that WebMsg will repeat once for each conference you have. Recall the function of the <$while> directive� XE "while directive" �: it causes a section of an HTML document (or template) to be repeatedly inserted until a condition is met. In this case the condition is the macro $list, which WebMsg sets true until there are no conferences left to list. In between <$while> and <$end>, we put all the HTML code we need to list one conference, including macros like <$name>.

Each time WebMsg sees the <$while> statement, it redefines the macros <$name>, <$title> and <$total> so that they refer to the next message conference. That’s why looping through the same HTML code over and over again produces a list with something different in each line. Loops like these are common in WebMsg templates.

There’s a lot you can do to customize your conference list. For example, there is no reason why the <$while $list> loop only has to generate one line of text each time through. You could also put your conference list in a table by adding appropriate table tags before and within the <$while> loop.

Let’s look more closely at one additional line from the above example:

	 <A HREF="$webmsg.list.<$name>.-12.12"><$title>

This line generates a link that someone can click on if they’re interested in that conference. The link generates a list of messages in that conference by calling another WebMsg command, “list”. Notice how we used the macro <$name> inside the link itself, making the link dynamic (that is, a different link is generated with each iteration through our <$while> loop). We’ll use macros to create links in many of our template files.

WebMsg Macros� XE "WebMsg:Macros" �

WebMsg implements many different macros that you can use throughout your templates to display information about messages and conferences. Some macros are specific to a partiular command; others can be used with a number of different commands. Here are three charts showing three different categories of macros.

(1) Text Macros display information about the current message or conference:

Macro�Definition�Scope��<$to>�Name of the addressee, including an email address if present�Read, List, Post��<$from>�Name of message sender, including email address if present�Read, List, Post��<$toname>�Name of addressee, not including email address�Read, List, Post��<$fromname>�Name of message sender, not including email address�Read, List, Post��<$email>�Sender’s email address�Read, List, Post��<$subj>�Message subject�Read, List, Post��<$day>�Day of the week message was posted (Monday, Tuesday, etc.)�Read, List, Post��<$date>�Date message was posted, in Julian date format�Read, List, Post��<$time>�Time message was posted, in seconds since midnight�Read, List, Post��<$num>�Message number of the current message�Read, List, Post��<$line>�The next line of message text�Read, Post��<$total>�The total number of messages in the current conference�All��<$last>�The message number of the last message in the conference�All��<$title>�40 character long description of the current conference�All��<$name>�One to eight character conference name�All��<$key>�Text of active search key during searching�List��<$form>�Filename of the current template file�All��<$uid>�Current message “universal ID number”�Read, List, Post��<$newmsg>�Number of the first new message for the current user�All��<$newtotal>�Total number of new messages for the current user�All��

(2) Link Macros help you create dynamic links to other messages and conferences:

Macro�Definition�Scope��<$msg>�URL reference to current message� (i.e.)�Read, List, Post��<$next>�URL reference to the next message or next page of messages�Read, List, Post��<$prev>�URL reference to the previous message or page of messages�Read, List, Post��<$orig>�URL reference to the original message�Read, List, Post��<$top>�URL reference to the first message in the current thread�Read, List, Post��<$threadnext>�URL reference to the next message in threaded order�Read, List, Post��<$threadprev>�URL reference to the previous message in threaded order�Read, List, Post��

(3) Conditional Macros are used with <$if> and <$while> directives to create conditional blocks and loops:

Macro�Definition�Scope��<$text>�Conditional: True if there are more lines of text �Read, Post��<$list>�Conditional: True if there are more conferences or messages to list�Conf, List��<$replies>�Conditional: True if the current message has replies�Read, List, Post��<$threads>�Conditional: True if message is part of a thread�Read, List, Post��<$isfirst>�Conditional: True if message is the first message in conference�Read, List, Post��<$islast>�Conditional: True if message is the last message in conference�Read, List, Post��<$isreply>�Conditional: True if message is a reply to another message�Read, List, Post��<$anonymous>�Conditional: True if conference supports anonymous/alias names�All��<$isowner>�Conditional: True if the registered user posted this message�Read, List, Post��<$canpost>�Conditional: True if the user has write access to the conference�All��<$isadmin>�Conditional: True if the user is a Moderator or Administrator�All��<$new>�Conditional: True if there are new messages available�All��WebMsg Commands

WebMsg has five basic commands: Read, List, Conf, Post and Delete. By varying the parameters to these commands, we have all of the facilities we need to implement a threaded message system on the Web. Let’s look at each command in detail.

Command Name�Read��Parameters�ConfName.MsgNumber[.Template]��Default Template�read.htm��Form�No��Examples�$webmsg.read.general.12�$webmsg.read.albbse.267.inet��The Read command� XE "Read command (WebMsg)" � “reads” the contents of a particular message. In other words, it creates an HTML document that contains the heading, text and other information about a single message on your system.

The first two parameters to Read are the conference name and the message number. The conference name is the one to eight letter name for the conference as defined in the Conference Manager. Notice that both the conference name and message number are required for each command. Unlike Searchlight BBS, WebMsg doesn’t have a “current conference”; it lets you select a new conference with each command.

The template filename is optional. If you don’t supply a template name, WebMsg uses the default template read.htm. If you want to use an alternate template, your template file must reside in the WEBMSG subdirectory and you must use the .htm extension. When you give your template name on the command line, omit this extension. Hence, the second example shown above will use inet.htm as the template.

The template file is what controls the format of your output. The default template file contains typical fields and constructs that you might use. If you want to modify these, we strongly recommend you make a backup copy of your original file in case you want to return to it. In the next few sections, we’ll look more closely at how to use macros and templates to generate messages.

Header

Your template file can use any of the Text Macros (except <$key>) to display information about the message you’re reading. Typically, you’ll use these macros to display a message header. Here is a simple example:

	<h3><$subj></h3><i>�	Msg # <$num> of <$last> on <$title>
�	To: <$to>, From: <$from>
�	Time: <$day> <$date>, <$time>
</i>

Of course, the formatting of the header and the inclusion of specific HTML codes, text or graphics is completely up to you. Also, you are not required to use all of the text macros shown here; if you wish to omit any of these, simply remove them from your template.

Text

The macros <$text> and <$line> work together to insert the text of the message into your HTML document. Here is an example:

	<pre><$while $text><$line>�	<$end></pre>

This code sets up a “while” loop that iterates once for each line of text in the message. The <$line> macro actually produces the text for the current line. We used the <pre> tag before displaying the message to indicate that the following text would be preformatted text. Web browsers render preformatted text in a monospaced font, and interpret carriage returns and other special characters as a text editor would. It’s not necessary to use the <pre> tag, but we recommend it unless you have a conference that’s specifically designed for messages containing HTML text.

Because text is inserted one line at a time, we can include additional text or formatting instructions after each line of text. For instance:

	<pre><$while $text><$line><HR>�	<$end></pre>

If we placed this in our template, we’d get a document that contained a horizontal rule after each line of text. More realistically, though, we might want to do something like this:

	<$while $text><$line>
�	<$end>

Here, we omitted the <pre> and </pre> tags, but inserted an explicit line-break between individual lines of text. This template produces text in a proportional font, but preserves line breaks between lines. (Note that this might not produce a very attractive display if your browser window is narrower than the text).

The <$line> tag has two optional parameters called strip and translate. To use them, you add the parameter after $line but before the closing angle-bracket: i.e., <$line strip>. When you use strip, WebMsg removes any Searchlight BBS color codes� XE "color codes" � or macros from the line. This can be a useful option when you share messages between Searchlight BBS and Spinnaker, because it allows your Searchlight BBS callers to use Searchlight’s color codes without those codes appearing on your Web site.

When you use translate� XE "translate" � (i.e. <$line translate>), WebMsg translates high-ASCII� XE "high-ASCII" � characters from the DOS character set convention to the Windows convention. If you share conferences with Searchlight BBS and your BBS callers typically post messages with high-ASCII characters (for example, if you host non-English speaking users), you will want to use the translation option so that letters with accents, uumlats and similar non-English characteristics appear correctly in Windows and other non-DOS systems. (To provide your BBS users with the correct translation of messages posted via the Web, you should use the TRANSLATE tag in your Post form; see page � PAGEREF TranslatePost * MERGEFORMAT �91� for more information).

Tip: Some web browsers can’t read HTML documents that contain lines longer than 255 characters. You should always make sure that your <$while> and <$end> statements have at least one line break in between them so that you don’t inadvertantly generate a line that’s too long. For example, something like this...

	<$while $text><$line><$end>

...will result in a too-long line when reading all but the shortest of messages.

Special Note: Messages can contain HTML tags� XE "HTML tags (in messages)" �. In other words, the “text” doesn’t strictly need to be a preformatted message. Users can mix HTML tags in with their text. You might want to include an announcement on your system to make your users aware of this.

Users cannot post Spinnaker macros in a message (i.e. any tag starting with <$). If you type any <$macro> into a message, WebMsg will render the macro literally rather than interpret it (in other words, if you type <$phone>, you’ll get the string “<$phone>“, not the value of the $phone macro). WebMsg does this for reasons of security. Since there are some combinations of macros that are dangerous (for example, a <$while> loop with an invalid macro as the conditional), your users should not be allowed to post such things in messages.

Links

To complete your template, you’ll want to include some links. Typically, you’ll want to have links that take you to the next and previous message. You can also have links for threading and other types of navigation.

WebMsg gives you a variety of Link Macros� XE "Link Macros (WebMsg)" � that help you create dynamic links that are relative to the current message. You can also use static links, or create dynamic links by including macros in the link.

The two basic link macros are <$next> and <$prev>; they generate links to the “next� XE "next message" �” and “previous� XE "previous message" �” message in the conference (in sequential order). Here’s how we might use them in a template:

	<$prev> Previous Message
�	<$next> Next Message

The macros generate an HTML reference (like “). So, we need to “close” them with an tag, just like we do with any other link. The actual reference produced by <$next> or <$prev> will automatically contain the correct conference name, message number, and template name, based on the current message.

You can also use <$next> and <$prev> in conditional statements, because they return a value of “false” if there is no next or previous message. For example:

	<$if $prev><$prev> Previous Message
 <$end>�	<$if $next><$next> Next Message </s>
<$end>

This is much better than the first example, because the link for “Previous Message” will be omitted if there is no previous message, and the link for “Next Message” will be omitted if there is no next message.

You aren’t limited to link macros when creating links. You can also use macros like <$name> and <$num> to build links of your own. For example, here are two links that you can include in your read macro:

	<A HREF="$webmsg.list.<$name>.<$num>.12"> List Messages �	<A HREF="$webmsg.post.<$name>.post.<$num>.<$form>"> Reply

The first link lists messages in the current conference beginning with the current message number. The second lets you reply to the current message by generating a “Post Reply” form. (Both the List and Post commands are discussed later in this manual).

Threading� XE "Threading (WebMsg)" �� XE "message threading" �

WebMsg includes a large number of links and conditionals that support threading. “Threading” means keeping track of all the replies to a particular message separately from other messages in the same conference.

You can use the <$threadnext> and <$threadprev> macros to insert links to the next and previous messages in threaded order. These work like the sequential <$next> and <$prev>, but they follow threading order instead of sequential order.

Macros <$orig> and <$top> provide links to the “original” and “top of thread” messages. By “original” message, we mean the message to which the current message is a reply. By “top of thread”, we mean the very beginning of the thread. Note that these are sometimes the same message, but are often different, because it is possible to reply to a message which is itself a reply.

You use <$threadnext>, <$threadprev>, <$orig> and <$top> just like you use <$next> and <$prev>. You can use these macros in a conditional statement, too.

Two conditional macros, <$threads> and <$replies>, let you selectively include text based on whether the message is part of a thread, or has any replies. For example, if you enclose your <$threadnext> and <$threadprev> macros inside a block beginning with <$if $threads>, you’ll eliminate those links in cases where a message has no threads.

<$Replies> actually does more than just return a true-false condition. It lets you access information about the replies to a message so that you can actually list out all of those replies in your document. We use this on our site to generate a list of replies at the foot of each message you read. To make the list, we use a <$while $replies> loop; each time through the loop, our Text Macros change to reflect the next reply.

Confused? Here’s an example that demonstrates all of these macros:

	<$if $replies><HR>�	Replies to this message:
�	<$num>. <$msg> <$subj> , posted by <$from>
�	<$while $replies><$num>. <$msg> <$subj> , posted by <$from>
�	<$end><$end>�	<$if $threads><p>�	[<$orig> Back to Original Message |�	 <$top> Back to Top of Thread |�	 <$threadnext> Thread Forward |�	 <$threadprev> Thread Backward]�	<$end>

Command Name�List��Parameters�ConfName.MsgNumber.MsgCount[.Template]��Default Template�list.htm or search.htm��Form�Optional (for keyword searches)��Examples�$webmsg.list.general.12.15�$webmsg.list.albbse.-15.15.usenet��The List� XE "List conferences command" � command generates a list of the messages in a particular conference. The first parameter is the conference name. The second and third parameters are the starting message number and the number of messages you want to list. For example, the command “$webmsg.list.general.12.15” means to list 15 messages from the conference “general”, starting with message number 12.

A negative MsgNumber indicates a starting position relative to the last message on the conference. So, the command “$webmsg.list.albbse.-15.15” will list the last 15 messages on the given conference, regardless of what the actual message numbers are. You can also use zero to read the first message on the given conference.

Generating the List

Within your list.htm template, you use a basic <$while $list> statement to build a loop. Each time through the loop, you can display information about one message. Typically, your loop will contain the message subject, sender name, date and time, and a link to read the message. Here is an example:

	<$while $list>�	<$num>. <$date> <$msg><$subj> <$from>
�	<$end>

The <$num> macro generates a URL (such as). So, by sandwiching <$subj> between <$num> and , we let the subject of the message serve as the link to read that message.

This is a very simple example of how to generate a list of messages. You can include graphics, table tags, or other text macros in your list (or you could eliminate some of these macros if you want a simpler list). Notice that you are not limited to displaying the message header with the list command; you can display the text as well. Thus, the “List” command can be put to use as a means to generate a Web page that contains the text of multiple messages, if that is desired.

The <$from> macro automatically includes the sender’s email address as a “mailto� XE "mailto" �:” reference, if it is available (you can use the <$fromname> macro if you want the name without the address).

<$While $list> can take an optional string of parameters for the conference names to list. For example, if you’d like to list only the conferences GENERAL, COMPUTER and WEB, you can write:

	<$while $list general computer web>

Wildcard names are also supported, so you can type <$while $list sl*> to list all the conferences that start with the letters SL. Notice that using conference names as parameters overrides the ConfName parameter given on the command line. Also, you can place two or more <$while> loops in your template if you use conference names as parameters. Thus, a single template file can contain several distinct conference lists.

By default, <$while $list> creates a sequential list of messages in a conference. But there are several other types of lists you can create by modifying the $list macro with a parameter. If you want a list in reverse order, you can add the tag “rev” or “reverse” to the macro; hence, <$while $list reverse>. You’ll get a list of messages from highest number to lowest. This is the same order that Searchlight BBS displays bulletins; so, you can use this syntax on your bulletins conference to afford it the same presentation as your BBS.

Another $list parameter is “thread� XE "thread" �”: <$while $list thread>. You use this parameter to generate a list of threads. That is, the list only contains those messages that are the first message in a thread; it skips replies. If you prefer a thread-oriented presentation, you’ll want to use this parameter when you list messages (you can list the replies at the foot of the message itself).

Paging Through a List

Whether you use <$list> alone or with one of its parameters, your list is limited to the number of entries that you specify on the List command line. You may have conferences with hundreds or thousands of messages in them; it makes sense to list only a small portion of the conference at a time.

Fortunately, WebMsg makes it easy to “page through” the conference list. In other words, after you view some number of messages, you can select a link to view the next (or previous) page of messages. Here’s how you might use them in your template:

	<$prev> View older messages �	<$next> View newer messages

The number of “older”or “newer” messages that these links generate is the same as what is on the current page. So, if your original command is “$webmsg.list.general.100.15”, then each page contains 15 messages (except when you get to the very beginning or end of the conference, in which case there might be fewer than 15 messages available).

Notice how the macros <$prev> and <$next> do double-duty. When we covered the Read command, we used these same macros to indicate “previous message” and “next message”. Macros like <$prev> and <$next> are context sensitive. That is, their function changes depending on which template they’re used in.

Searching� XE "Searching conferences" �

WebMsg’s List command supports a search string. When you supply one, WebMsg lists only those messages that contain your search term. It scans both the message header and the text for a match, using a case-insensitive substring algorithm.

But, how can we supply the List command with a search string? There’s no provision for it on the command line; and even if there were, we wouldn’t want to force users to manually type in a URL. The answer is forms. HTML provides a special syntax that allows us to type data into fields on a page and submit that data along with a URL. WebMsg can accept a form containing a search string, and use it to generate its list.

Here is an example of how we would set up a form to search a particular conference:

	<FORM METHOD="POST" ACTION="$WEBMSG.list.<$name>.0.100">�	Search this conference for: <input size=40 maxlength=40 name="KEY">�	<INPUT TYPE="submit" VALUE="Search">

The critical element of this HTML code is the <input...> tag. This is what generates the on-screen form where users can type their search key. The field name must be “KEY”, so that WebMsg can recognize that the data is a search key.

When this form is submitted to WebMsg, it executes the command “$webmsg.list.<$name>.0.100” just as usual, except that only messages matching the search term are listed. (We used <$name> in place of the conference name because this fragment of HTML appears at the foot of a message list; hence, we insert the current conference name as a default). WebMsg will list up to 100 matching messages starting with the first message in the conference.

WebMsg uses the template name search.htm to carry out searches. This template is very similar in structure to list.htm, but you can change it if you’d like to offer a different format for searches. Of course, you can also supply a template name in the URL.

Tip: If you want to limit your listing to, say, 10 or 15 entries, you can include a link at the foot of your listing that takes the user to the next page of search results. Here’s an example:

	<FORM METHOD="POST" ACTION="$WEBMSG.list.<$name>.<$num>.10">�	<input size=40 maxlength=40 name="KEY" value=<$key> type=hidden>�	<INPUT TYPE="submit" VALUE="Get next page of results">

We did two things to turn this from a “begin search” command to a “get next page of results” command. First, we replaced the starting number with <$num>, which automatically causes the search to pick up after the last message number from the current page. Second, we filled in the input field with <$key>, which returns the previously typed search key, and made the field hidden, so that the user can’t type a new search key.

Note: WebMsg only allows you to search one conference at a time. There is currently no provision for searching across multiple conferences.

Command Name�Conf��Parameters�ConfName[.Template]��Default Template�conf.htm��Form�No��Examples�$webmsg.conf.*�$webmsg.conf.al*.altgrps��Conf� XE "Conference list command" � is the command you use to list your conferences. Typically, you’ll use Conf to generate a list of conferences, each of which is a link that generates a list of the messages in that conference.

“ConfName” is either a conference name, or a wildcard specification (using the characters * and/or ?). For example, if you type $webmsg.conf.*, you’ll list all available conferences. If you typed in something like $webmsg.conf.al*, you’ll get all the conferences that begin with the letters AL in the conference name (not the conference description).

Generating the List

Use a basic <$while $list> structure to generate your conference list. For example:

	<$while $list>�	<$name> <A HREF="$webmsg.list.<$name>.-12.12"> <$title> <$total>�	<$end>

You can use any of the text macros that apply to conferences in your list, but not those that apply to individual messages.

Currently there is no facility for “paging through” a conference list, as you can do with a message list. Instead, if you have a large number of conferences, use separate links with wildcards to divide your list into smaller segments. Or, you can generate a large conference listing as an HTML document and break it up manually.

Alternative Listings

The loop above generates a list containing all the conferences that match the wildcard. Sometimes, though, you want to list only a particular conference or group of conferences. You can accomplish this by supplying additional parameters in your <$while $list> loop, like this:

	<$while $list general sl*>�	<$name> <A HREF="$webmsg.list.<$name>.-12.12"> <$title> <$total>�	<$end>

This loop lists only the conference GENERAL and those conferences that match the wildcard name SL*.

You can use multiple <$while $list> loops in a single page. This lets you do things like categorize your conferences by subheadings or break your conference list up into more manageable sections.

New Messages� XE "New Messages" �

WebMsg stores a high message pointer� XE "high message pointer" � in each conference for each Spinnaker user who reads that conference. The high message pointer starts off equal to the lowest-numbered message on the conference. Each time a user reads a message, WebMsg compares the number of the message being read to the previous high message pointer; if the message being read has a higher number, then the high message pointer is updated.

You can take advantage of high message pointers via three macros: <$new>, <$newmsg> and <$newtotal>. The <$new> macro tells you whether there are any new messages available for the current Spinnaker user. <$New> is true if the current user’s high message pointer is less than the number of the highest message in the conference (meaning that the user has not yet read the highest-numbered message). <$New> is false if the current user has never read any messages in the conference, or if there is no user logged in to Spinnaker.

If <$new> is true, then <$newmsg> returns the message number of the first new message, and <$newtotal> returns the total number of new messages available.

You can use the <$new>, <$newmsg> and <$newtotal> macros in your Conf template to display the number of new messages available in each conference and create links that take your users directly to the first message that’s new to them. For example:

<$if $new>�<$name> <a href=/$webmsg.list.<$name>.<$newmsg>.12> <$title> <$total> (<$newtotal> new)�<$else>�<$name> <a href=/$webmsg.list.<$name>.-12.12> <$title> <$total>�<$end>

High message pointers are based on the Spinnaker login name. WebMsg can only store high message pointers for users who have logged in to your Spinnaker site. If you allow public access to conferences, WebMsg will not keep track of high message pointers for users who have not logged in.

WebMsg’s high message pointers are independent of those in Searchlight BBS. In other words, a Spinnaker user can have the same name as a Searchlight BBS user without interfering with the Searchlight BBS user’s high message pointer. Conversely, Spinnaker users who have an account on your Searchlight BBS system should be aware that their high message pointers from the BBS are different from those in Spinnaker.

Note: If you wish to renumber� XE "renumber" � a conference used with Spinnaker, be sure to obtain a version of Searchlight’s SLPACK utility program that is compatible with Spinnaker (SLPACK version 4.5e or later). Do not renumber a WebMsg conference with an earlier version of SLPACK� XE "SLPACK" �. Doing so will render your WebMsg high message pointers invalid.

Command Name�Post��Parameters�ConfName[.Template][.Original][.Readform] or [.Uid][.Readform]��Default Template�post.htm��Form�Yes��Examples�$webmsg.post.general $webmsg.post.albbse.post.59.read��Post� XE "Post a message command" � is a dual-purpose command. As a URL, Post is used to create a form that a user can fill out to post a message in a conference. As a form, Post actually saves a new message in a conference.

Creating a Form

To post a message, users must fill out a form that includes fields for the message body, the subject, the addressee, etc. These forms are set up much the same was as the Search forms we used with the List command, but more fields are provided.

Creating a form is important, because it allows you to insert dynamic fields like the conference name or the original message number in a reply. Thus, you can have just one template that’s used to post a message on any conference, without requiring the user to type or pick the conference name each time (instead, they can choose a link that posts a message in whatever conference they are already reading). The first type of Post command we’ll look at actually creates this form by reading a template file. Consider this command:

	$webmsg.post.<$name>.post.<$num>.<$form>

You’ll find this in the default Read.txt template with the description “Reply� XE "Reply" �”. This command generates a form that contains all of the fields necessary for someone to type a reply to the message they are reading, including the conference name and a reference to the original message number.

If we look inside post.htm, we can start to see how the form is created:

<FORM METHOD="Post" ACTION="$WEBMSG.Post.<$uid>.<$form>">�<input size=10 name="CONF" value="<$NAME>" type="hidden">�<PRE>� To: <input size=40 maxlength=40 name="TO" value="<$from>">� Your Name: <input size=40 maxlength=40 name="FROM" value="">�Your Email: <input size=40 maxlength=128 name="EMAIL" value="">� Subject: <input size=40 maxlength=40 name="SUBJ" value="<$subj>">�</PRE>

These lines create the various input fields, and in some cases fill them with default information. The post template accepts all of the same Text Macros that the read template does, and returns the same information about the message that we’re replying to. Thus, by placing <$subj> in the subject field, we create a default subject that is the same as the original subject. We could have left the subject field blank (or omitted the field entirely).

Next, we need a text field so users can type in a message:

	Message:
�	<textarea name="TEXT" rows=16 cols=75><$while $text>�	><$line>�	<$end>�	</textarea>

This not only gives us a text field, it “quotes” the message we’re replying to with “>“ characters in front of the quoted text� XE "quoted text" �. We generated the quoted text with the same type of <$while $text> loop that we use to display a message. We could have omitted the quoted text simply by excluding this loop.

Finally, we need a button to press that submits the message:

	<INPUT TYPE="submit" VALUE="Post Message"></FORM>

About the Fields

Data like the subject, to and from address, etc. are supplied via fields with specific names. The field names that WebMsg recognizes are these:

Field Name�Function�Maximum Length��CONF�The name of the conference to post in�8��TO�Name of addressee (i.e. “Joe Smith”)�25��FROM�Name of message sender (i.e. “Frank Jones”)�25��SUBJ�Message subject or title�40��EMAIL�Sender’s email address�255��TEXT�The text of the message�76 characters/line x 1000 lines��RETURN�Name of an HTML file to send in return�12��BACKTO�Message number to return to after posting�8��EDIT�Message number to replace�8��TRANSLATE�Translate high ASCII codes to DOS format�1��For best results, limit the width of the fields on your forms to these values. If you inadverntantly allow larger fields, WebMsg will truncate the input to the values shown here.

All fields allow you to type upper and lowercase values. Notice that a specific EMAIL field is provided for the sender’s email address� XE "email address" �. Thus, the TO and FROM fields should be used strictly for names, and not for email addresses. Note that only the sender of the message can specify his or her email address (you cannot specify an email address for the addressee).

You can add additional, arbitrarily-named fields to your post form. If you do, the field name and its data are inserted into the text of the resulting message. Fields are inserted before the message text, in the order in which they appear in the form, as “Fieldname: Data”. For example, if you included a field for birthdate in a message form, your message would have a line that looked like this:

	BIRTHDATE: 02-23-62

You can use fields like this to take surveys or have other types of forms where you want to post the results to a conference. The field name plus the field data must not exceed 74 characters in length; the maximum number of fields you may post at once is 128 (including the standard fields).

Anonymous Name� XE "Anonymous Name" �s & Aliases

Each conference in WebMsg has an “Allow Anonymous� XE "Allow Anonymous" �” attribute associated with it in the ConfMan program. This attribute affects what WebMsg will accept in the FROM field.

If Allow Anonymous is checked, WebMsg will accept any data in the FROM field. This allows users to type in anonymous names or handles, if they choose to do so. If no FROM field is present, or if its contents are blank, WebMsg inserts the word “Guest”.

If Allow Anonymous is unchecked, WebMsg ignores the FROM field and instead inserts the current user’s login name. However, if no user is logged in, WebMsg still uses the contents of the FROM field.

Return Document� XE "Return Document" �

By default, when you post a message, WebMsg returns a document containing the message itself. In other words, it posts the message and then returns the results of a “$webmsg.read.conf.x” command where x is replaced by the message number of your newly posted message.

You might want to return some other document instead. If so, you can use the field RETURN to specify an alternate HTML document. Your document must be located in your WEBMSG directory and must be an HTML document (i.e. a document with an HTM extension). You are not allowed to use a full pathname with the RETURN field, just a filename.

Tip: You can “hide” fields from your users by using the “hidden” tag� XE "hidden tag" � inside the field definition. Some of our example files use a hidden tag on the conference name. This lets you supply fields that can’t easily be modified. If you use the RETURN field, you’ll most likely want to make it a hidden field.

BACKTO� XE "BACKTO field (WebMsg)" �

When posting a reply to an existing message, it’s convenient to return to that message after your reply is posted. By default, WebMsg responds to a post by reading the newly posted message. If you want to return to an original message, you can use the BACKTO field in your form to supply the original message number.

The best way to use BACKTO is as a hidden field on a template that you use to generate forms for posting messages. Use the macro <$NUM> to fill in the original message number. For example:

<input size=10 name="BACKTO" value="<$NUM>" type=hidden>

Replacing Existing Messages

You can edit an existing message� XE "edit messages" � by replacing it. To replace a message, you simply include the field name EDIT in your form, and fill it in with the number of the message you want to replace. (As with BACKTO, it is best to fill this field automatically with <$NUM> and keep it hidden).

WebMsg only allows you to replace a message if you are registered user and either (1) your name matches the name in the FROM field of the old message, or (2) you have Conference Moderator or Administrator status (as defined via Conference Manager). If you are the moderator or administrator, you can update the message text and any field in the message; if you are replacing a message you posted, you may not be able to update the FROM field, depending on whether the conference is set to allow anonymous messages.

If you want to create an “Edit Message” command, copy your POST.HTM template and add the hidded EDIT field to it like this:

<input size=10 name="EDIT" value="<$NUM>" type=hidden>

You might wish to call this template EDIT.HTM and create a link to it on your READ template. You can also use the <$isowner> and <$isadmin> conditionals to hide the Edit link in cases where editing would not be allowed.

Email� XE "Email" �

WebMsg lets you send Searchlight BBS� XE "Searchlight BBS" � email messages (that is, it lets you send local mail to a Searchlight BBS mailbox). To do this, you simply use MAIL as the name of the conference. The only restriction is that the addressee name (TO field) must match an existing username on your BBS; otherwise the message is rejected. Note that only local email is supported (you can’t send internet email this way).

You can use this feature to email the results of surveys or other kinds of forms to your Searchlight BBS mailbox, or provide an input form for feedback. You might want to make the TO and CONF fields hidden on such a form, to prevent someone from tampering with them.

You need to provide a RETURN field in your form if you post to the MAIL conference. Since WebMsg can’t read back the posted message (which is the default), you must provide an alternate HTML document for it to return to indicate a successful posting. For example:

	<input size=40 name="RETURN" value="THANKS.HTM" type=hidden>

This causes the file THANKS.HTM to be returned to the user to indicate a successful post. You must provide the THANKS.HTM file in your WebMsg directory (not your document home directory).

You must configure your MAIL conference to allow posting for this to work. Also, since WebMsg does not provide any facility for reading messages in the MAIL conference, the only way you could retrieve a message saved this way is through Searchlight BBS.

High ASCII� XE "High ASCII" � Translation� XE "Translation" �

The ASCII character set provides for non-English characters (for example, characters with accent marks and uumlats) in the “high ASCII” character range. Unfortunately, the mapping convention for high ASCII characters in DOS is different from the standard mapping used in Windows and most Web browsers.

If you don’t run Searchlight BBS, this is not a problem, since there is no need to use the older DOS character mapping. However, if you run Searchlight BBS and share message conferences with Spinnaker, messages with high ASCII characters posted via Spinnaker will not appear correctly on your BBS unless you include the TRANSLATE tag in your form. You can do this simply by inserting this hidden line in your Post template:

	<input size=1 name=TRANSLATE value=Y type=hidden>

TRANSLATE is a one-character field; use Y to translate characters, or N to disable translation (translation is also disabled if the field does not appear). If you want to give your user the choice as to whether to translate each message as it is posted, you can do so with a radio dialog, like this:

Translate: <input size=1 type=radio name=TRANSLATE value=Y> Yes� <input size=1 type=radio name=TRANSLATE value=N checked> No

Messages saved with TRANSLATE=Y use the DOS convention for high ASCII characters, and are thus readable via Searchlight BBS. To make such messages readable via Spinnaker (as well as messages posted via the BBS), you need to add the translate tag to your <$line> message when you retrieve the message. For more information, see page � PAGEREF TranslateRead * MERGEFORMAT �78�.

If you don’t use our DOS based BBS product, or if you don’t have callers that typically post messages with high ASCII characters, you can leave the translation options for reading and posting messages disabled. If you do use the translate options, make sure you use both the read and write options and that you update any template that contains a $webmsg.post command or a <$line> macro (in particular, make sure you update the <$line> macro in your post.htm template, if you use one).

Command Name�Delete� XE "Delete" ���Parameters�ConfName.MsgNumber[.Readform]��Default Template�read.htm��Form�No��Examples�$webmsg.delete.general.12�$webmsg.delete.albbse.59.readform��The delete command lets you remove a message. The parameters include the conference name and message number you wish to delete. Only the system administrator or conference moderator (as defined in the Conference Manager utility) can delete messages.

Once a message has been deleted, there is no way to recover it, so be careful when using this command.

After deleting the message, WebMsg returns either the next message in that conference or the last message in the conference. If you read messages with a template other than READ.HTM, you can specify an alternate template name as the last parameter.��

� TC "File Libraries" �This chapter serves as reference for WebFile, Spinnaker’s Searchlight BBS compatible file library application. Before you try to use WebFile, make sure that your Spinnaker Web Server is installed and able to serve HTML documents. If it isn’t, review the Overview.doc and Server.doc files for more information. If Spinnaker doesn’t work, then WebFile won’t work, either.

Installation

If you chose to install WebFile when you installed Spinnaker, WebFile is almost ready to use. The following paragraphs provide detailed information about how WebFile should be installed, in case you need to install it manually or install updates in the future.

Step 1: Install the WebFile Files

WebFile consists of two executable files called WEBFILE.DLL and LIBMAN.EXE. Make sure these files are installed in your Spinnaker working directory (the same directory where your SPIN.EXE file is installed). Note: WebFile requires SL.DLL, a program module included in the WebMsg application. If you do not have WebMsg installed, you should install it before you run WebFile.

Template files are necessary for WebFile to run. A default set of templates is included in the WEBFILE subdirectory. Make sure this directory exists.

Step 2: Make a Node for WebFile

WebFile acts like a node in a multiuser Searchlight BBS system. Before you use it, you have to make sure that it has access to a Searchlight BBS home directory and the other support files for Searchlight BBS.

Note: WebFile can share a node with WebMsg. If you already set up a node for WebMsg, there is no need to set up an additional node for WebFile; skip to Step 4.

If You Run a Searchlight BBS System�If you want to use WebFile with an existing BBS, you have to create a new node specifically for WebFile. You do this the same way you would create any other node on your BBS; make a working directory, copy a CONFIG.SL2 file into it, and adjust the node number to a proper value.

If your Searchlight BBS system resides on a different computer than your Web server, you’ll need to use a file-sharing LAN to share the file libraries and databases between the two applications. You can run Searchlight BBS and Spinnaker on the same computer if you use the Windows version of Searchlight BBS (version 5.0 or later).

Caution: Before you run WebFile, test the node you have set up for it by trying to run Searchlight BBS from that home directory. Make sure you can log in and access your files. If you are using a file-sharing network, you may need to familiarize yourself with some of the concepts and pitfalls of a LAN� XE "LAN" � installation. In particular, you should make sure that the drive letter of the drive containing your Searchlight BBS data files is the same on every machine in your network. Needless to say, if you can’t get Searchlight to work with your new node, WebFile won’t work, either. Your Searchlight manual contains more information about mulituser and LAN configurations.

You do need to have a multiuser version of Searchlight in order to share directories with WebFile. If you have a single line version, or if you are already using the maximum number of nodes which your license allows, contact us for instructions before you install WebFile.

If You Don’t Run a BBS�If you don’t have a Searchlight BBS system, you don’t need a LAN or a file server to use WebFile. Instead, use the default SLBBS home directory we provided with Spinnaker.

Step 3: Set Your Home Directory

LibMan� XE "LibMan" � is the Windows-based application program that you’ll use to create, modify, delete, and maintain security on your WebFile libraries. Launch the LibMan application program by clicking its icon or by typing “LIBMAN” at a command prompt.

The first time it starts, LibMan may prompt you to enter the path to your Searchlight Home Directory. If you have a Searchlight BBS system already installed and you’ve created a node for Spinnaker, enter the directory path to that node’s home directory here. If you like, you can click on the “…” button to select a home directory from a list of available files (you must actually double-click the CONFIG.SL2 file to make your selection).

Step 4: Review Your Library List

WebFile is now installed. But before you can use it, you need to set up some file libraries.

If this is a new installation, you need to create new libraries. You do this through the LibMan program; see Library Maintenance in the next section for details.

If you already have libraries from an existing Searchlight system, you can use them with WebFile. However, before WebFile can use your libraries, you must configure them either as public or as available to specific security groups, users, or IP addresses. Again, you use the LibMan program. Bear in mind that by default, none of your libraries are considered available; before you can do anything with WebFile, you need to select some libraries and configure them appropriately. See the next section for details.

Step 5: The Test

Now we’re ready to test WebFile. Make sure you’ve carefully followed the steps above. Start Spinnaker. Then, from a Web browser, type in this URL, substituting your domain name or IP address for mydomain.com:

	http://mydomain.com/$webfile.dir.*

If all has gone well, you should get a page that contains a list of your libraries. (If you have a lot of libraries, this could take a few moments).

If it didn’t work, go back and make sure that Searchlight itself can run and list libraries in the node you’ve set up for WebFile. Make sure that WEBFILE.DLL and SL.DLL are in your Spinnaker working directory (the same directory as SPIN.EXE) that your template files are properly installed.

Using WebFile

Basics

WebFile uses the same conventions as Searchlight BBS. A library is a one to eight character name that you assign to a group of files(it’s important to distinguish that from the actual DOS or Windows directory path. Searchlight and WebFile maintain their own library databases internally, providing each file with both a short 40 character description and a long description that can extend to as much as 1000 lines of text. WebFile also stores download counts and supports individual file password� XE "environment" �s.

In this documentation we’ll use the term library to mean the Searchlight/WebFile library name, rather than the DOS or Windows directory. We’ll use the term path or directory in those instances where we mean the DOS/Windows directory. If you have not used Searchlight before, you may want to review its documentation before you use WebFile.

To ensure compatibility with Searchlight BBS, filenames in WebFile are limited to the DOS/Windows 3.1 format (eight characters with a three character extension). However, extended file descriptions are provided in addition to the filename, so there is plenty of room to describe your files.

WebFile features an Upload� XE "Upload" � command that lets Netscape� XE "Netscape" � 2.0 users submit files to your file libraries using Netscape’s new “multipart/form-data” method. Uploading via older browsers is not supported.

Commands

During step 5 of our installation, we executed a simple WebFile command. We did it by sending the URL “$webfile.dir.*” to our Spinnaker Web server. Spinnaker knows that this is a WebFile command because of the “$webfile” part of the URL; it forwards the entire command to WebFile through a special program interface called CGI-DLL. Then, WebFile creates an HTML document with your library list in it. That’s the document your browser receives in return for making the initial request.

All WebFile commands follow the same syntax of “$webfile.” followed by one or more parameters. We’ll cover these in a moment; first we’ll look at the macros that are available in your WebFile templates.

If you aren’t familiar with templates, you might want to read up a bit on them first. Your WebMsg documentation covers template theory in some detail. If you’ve already read it, you’re ready to jump right into the WebFile commands, which are very similar to those of WebMsg.

Library Maintenance

LibMan� XE "LibMan" � is the configuration program you’ll use to create, modify, delete, and assign security to your file libraries. If you are familiar with Searchlight BBS, you’ll find that LibMan allows you to edit many of the same library attributes as Searchlight’s CONFIG utility. However, LibMan is Windows-based and offers the advantages of a Windows interface.

If LibMan is not already running, start it by double-clicking its icon or by typing “LIBMAN” at a command prompt. You should see a list of any existing libraries on the left, with options screens on the right:

�

The default view shows both the short library name and long description. You can click the view menu if you’d like to view only the short names or only the descriptions.

Preferences

Click File and Preferences to view the Preferences dialog box. You can set the Searchlight home directory and the default library for uploading new files (see Upload on page � PAGEREF Upload * MERGEFORMAT �112� for more information). Click the “No uploads” checkbox if you want to disable uploading to your Web site.

Adding New Libraries

From the File menu, choose New Library� XE "New Library" �. LibMan displays this dialog:

�

Choose a one to eight character library name. The name must not be the same as an existing library, and it must not contain any characters that cannot be used in a filename (i.e. no slashes or punctuation marks). This is the library name or “short name” that you’ll use throughout WebFile to refer to this library.

WebFile and Searchlight let you choose a directory in which to store the database files associated with each library. If you have multiple disk drives or multiple file servers, this lets you balance the load of many libraries across your available storage. Type in the name of a directory where you’d like to store the data files for your new library. If you don’t have a preference, you might want to choose your Searchlight home directory, although it is recommended that you set up a new directory specifically for file library databases. If you have a prefered path from an existing Searchlight system, you can use that.

The path you type here can be different from the actual location of the files that you want to include in this file library. In the case of CD-ROM� XE "CD-ROM" � file libraries, the paths must be different, since WebFile can’t create database files on a read-only device. You can specify the Path to Files after you have created the library.

When you click OK, LibMan creates the library and adds ito the your list. Now you can modify the library by clicking on it and using the tabbed fields in the right-hand portion if LibMan’s display.

Modifying Libraries� XE "Modifying Libraries" �

Choose a library by highlighting its name. You can modify library attributes and security in the right-hand portion of the LibMan window by selecting the General or Security tabs.

General Information

Each library has a description and a number of preference settings associated with it. Add or modify these settings under the General tab.

Description is a one to 40 character alphanumeric field that you can use to describe the library. You can access the description from your templates and have it appear in your HTML documents.

Path To Files� XE "Path To Files" � is the physical location where the files associated with the library are stored. In most cases, Path to Files is the same as the place where you created your library’s databases. The major exception to this is CD-ROM libraries. When you use a library on a CD-ROM, you need to enter the drive and path letter for your CD drive here, after having created the library databases.

CD ROM� XE "CD ROM" � is a checkbox that tells WebFile whether the library is associated with a CD ROM drive. If this box is checked, WebFile will copy files in the library to a temporary directory when users download them (it will automatically remove the copies after the file download is complete). By copying files, you reduce access to your CD-ROM drives and improve the overall throughput of your Web site. You can check this box for any CD-ROM or read-only device. It is especially useful when used with multi-disc CD-ROM changers. WebFile copies files from CD changers sequentially, thus avoiding “swapping” between discs.

Security

Each library can be made secure by restricting the groups, users, or IP addresses that can use that library. The security settings for WebFile are similar to those for HTML directories in Spinnaker. Select the desired library on the left, then select the Security tab on the right, and choose the “Read” or “Write” security option. If the “Enforce Security” box is checked, then WebFile will treat the library as secure; if you want to create a completely open library, simply uncheck this box. (Note: all libraries start out with Enforce Security checked).

“Read” access permits users to view the contents of a file library and download its files. “Write” access permits users to upload files to that library. Notice that it is possible to create a write-only library (i.e. a library for which uploading is permitted, but not downloading). Write-only libraries are useful if you want users to be able to submit private files for system administrators.

To create a secure library, check Enforce Security and then check Read or Write. Use the dialog at the bottom of your screen to decide which groups, users or IP addresses are permitted access. Notice that WebFile keeps a separate setting for Read and Write, so when you are done making one setting, click the other one and make the appropriate setting.

Administrator

WebFile supports the concept of a System Administrator. Someone with Administrator security level overrides all other security levels and is allowed full read and write access to any library. If you wish to use the Administrator capability, check Allow Administrator� XE "Allow Administrator" � and then select which groups, user names or IP addresses are allowed to be Administrators. Please not that the Administrator setting is global to the entire WebFile system (it is not specific to the particular library that’s highlighted at the time you make the settings).

WebFile Macros� XE "WebFile Macros" �

WebFile implements many different macros that you can use throughout your templates to display information about files and libraries. Some macros are specific to a particular command; others can be used with a number of different commands. Here are three charts showing three different categories of macros.

 (1) Text Macros display information about the current file or library:

Macro�Definition��<$name>�Name of file (one to twelve characters)��<$name *>�Same as <$name>, but replaces periods with astericks��<$size>�Size of current file, in Kilobytes��<$day>�Day of the week file was uploaded (Monday, Tuesday, etc.)��<$date>�Date file was uploaded (i.e. 11-15-95)��<$short>�File’s short description (1 to 40 characters)��<$downloads>�Number of times the file has been downloaded��<$line>�The next line of the long file description��<$path>�Full directory path to the current file��<$dir>�Name of the current file area (max. 8 characters)��<$total>�The total number of files in the current library��<$title>�40 character long description of the current library��<$key>�Text of active search key during searching��<$form>�Filename of the current template file��

(2) Link Macros help you create dynamic links to other libraries:

Macro�Definition��<$range>�The maximum number of files to list on one page��<$more>�Conditional: true if there are more files than could be listed��<$next>�Name of the next file to list, if $more is true��

(3) Conditional Macros are used with <$if> and <$while> directives to create conditional blocks and loops:

Macro�Definition��<$long>�Conditional: True if the file has a long description��<$text>�Conditional: True if there are more lines of description text ��<$list>�Conditional: True if there are more libraries or files to list��<$isadmin>�Conditional: True if the current user is the system administrator��

Don’t worry if the explanations given here aren’t exhaustive. We’ll cover these macros in much more detail when we look at the individual WebFile commands, and we’ll provide many examples for you to work from.

All macros that return text strings can include an optional translate� XE "translate" � tag to translate high ASCII characters to the Windows character code conventions; i.e. <$short translate>. This is necessary when displaying files saved with the DOS based Searchlight BBS system if your file descriptions contain high ASCII characters. Commands that take forms as input can include this line to force the form data to be saved in a DOS-compatible format:

	<input size=1 name=TRANSLATE value=Y type=hidden>

Please see the WebMsg documentation for more information about high ASCII characters and translation.

WebFile Commands� XE "WebFile Commands" �

WebFile has seven basic commands: Dir, Files, New, Search, Send, Upload and Post. By varying the parameters to these commands, we have all of the facilities we need to implement a file library on the Web. Let’s look at each command in detail.

Command Name�Dir��Parameters�DirName[.Template]��Default Template�dir.htm��Form�No��Examples�$WebFile.dir.*�$WebFile.dir.SL???.support��The Dir command generates a list of available file libraries. The parameter is either a single library name or a wildcard character; use “*” to list all libraries (as in our first example). The default template, dir.txt, can be overridden with a different template name by adding it as the second parameter.

The template file is what controls the format of your output. The default template file contains typical fields and constructs that you might use. If you want to modify these, we strongly recommend you make a backup copy of your original file in case you want to return to it. All WebFile templates are stored in a subdirectory called WEBFILE.

Generating the List

Within your template file, use a <$while $list> construct to begin your list of libraries. Within it, you can use the <$dir>, <$title> and <$total> macros to produce your actual library listing; links to libraries are constructed by laying out additional Webfile commands containing these macros. For example:

<$while $list>�<$name> <A HREF="$webfile.files.<$name>.!.25"> <$title> <$total> messages
�<$end>

As with any template file, you can dress up this very simple listing with any desired HTML formatting commands or graphics.

Alternative Listings

The loop above generates a list containing all the libraries that match the wildcard� XE "wildcard" �. Sometimes, though, you want to list only a particular library or group of libraries. You can accomplish this by supplying additional parameters in your <$while $list> loop, like this:

<$while $list uploads sl*>�<$name> <A HREF="$webfile.files.<$name>.!.25"> <$title> <$total> messages
�<$end>

This loop lists only the library UPLOADS and those that match the wildcard name SL*.

You can use multiple <$while $list> loops in a single page. This lets you categorize your libraries by subheadings or break your list up into more manageable sections.

Command Name�Files��Parameters�DirName.StartFile.Range[.Template]��Default Template�files.htm��Form�No��Examples�$WebFile.files.uploads.!.25�$WebFile.files.utils.MYFILE.30��The Files command generates a list of the files in a particular library. The first parameter is the library name. The second and third parameters are the starting filename and the number of files you want to list. For example, the command “$WebFile.files.uploads.MYFILE.25” means to 25 files from the library “uploads”, starting with the file named “MYFILE”. Because WebFile uses the period to separate its parameters, you can substitute an asterick for the period in a filename, if you wish to specify a complete filename with an extension ($webfile.files.uploads.MYFILE*TXT.25”). The macro <$name *> generates a filename with an asterick in place of the period; you can use it when you want to specify a precise filename based on the current filename in a template.

Tip: The “starting filename” doesn’t have to exactly match a file in the library. If it doesn’t match, then the list starts with the next file in alphabetical order. If you want to list files starting from the beginning of the library, use “!” (exclamation point) in place of the filename. Since “!” precedes all other ASCII characters in alphabetical order, using it guarantees that your list will start with the first file.

Generating the List

Within your files.htm template, you use a basic <$while $list> statement to build a loop. Each time through the loop, you can display information about one files. Typically, your loop will contain the filename, description, size, and a link to download the file. You can also include the file’s upload date and the number of times it was downloaded. Here is an example:

<$while $list>�<a href="$webfile.send.<$dir>./<$name>">� <$name>: � <$short>� <i> (<$size>k, <$downloads> downloads, <$date>)</i>
�<$if $long>�<PRE><$while $text> <$line>�<$end></PRE>	

Notice how we created the link for downloading the file: we used another $webfile command, and filled in the library name and filename with macros representing the current file and library. (The $webfile.send command is covered later in this manual).

Files in WebFile (and Searchlight BBS) can have two types of descriptions: a “short” description� XE "short description" � consisting of a string of 40 characters, and a “long” description� XE "long description" � that can be up to 1000 lines of text. Short descriptions are returned directly by the <$short> macro. For the long description, Webfile uses a conditional statement and a while loop to generate the description one line at a time. The conditional macro <$text> returns true when there are more lines of text available, and <$line> returns each line of text. The macro <$long> tells you if there is any long description at all, so you can skip the entire loop if a long description doesn’t exist (long descriptions are optional in Webfile and Searchlight, although short descriptions are mandatory).

Paging Through a List

Regardless of the total number of files in a library, your list is limited to the number of entries that you specify on the List command line (as the Range parameter). You may have libraries with hundreds or thousands of files in them; it makes sense to list only a small portion of the library at a time.

Fortunately, WebFile makes it easy to “page through” the file list. In other words, after you view some number of files, you can select a link to view the next page of files. The <$more> and <$next> macros help you build an appropriate link. For example:

<$if $more>�<a href="$webfile.files.<$dir>.<$next>.<$range>"><H1>More Files...</H1>�<$end>

In essence, we’ve created another Webfile list command, substituting <$next> for the starting filename. Webfile sets <$next> equal to the name of the next file to be listed and <$range> equal to the range number that we typed in our original command. The <$if $more> block allows us to eliminate this link if there are no more messages left to list.

Command Name�New��Parameters�None��Default Template�new.htm��Form�Yes��Examples�$WebFile.new��New lets you generate a list of new files. By “new files� XE "new files" �”, we mean files submitted since a particular date; the actual date and other parameters are specified on a form. New scans all available file libraries for new files in the specified range.

Creating a Form

Instead of typing the parameters to New on the URL, you fill out a form and post the form to WebFile. Forms are set up using special HTML commands. (If you need more information about Forms than is described here, you should consult an HTML reference manual).

Here is a sample “New Files” form. It lets you specify the number of days old that a file can be in order to be considered a new file:

<FORM METHOD="POST" ACTION="$WEBFILE.new">�View new files submitted in the last� <input size=2 maxlength=3 name="DAYS" value="7"> day(s)� <input size=4 maxlength=4 name="RANGE" value="15" type=hidden>� <input size=12 maxlength=12 name="FORM" value="new" type=hidden>� <INPUT TYPE="submit" VALUE="New Files">�</form>

This form is preprogrammed to list a maximum of 15 files per page, although the field containing the number 15 could be “unhidden” in order to allow users to type in a desired upper limit. Here is a summary of the fields you can use in this type of form:

Field Name�Function�Maximum Length��DAYS�The maximum age of new files to list�8��RANGE�Maximum number of files to list per page�8��FORM�The name of the template file�12��If you specify a template name, your file should have the .HTM extension; but don’t specify the extension in your form. If you leave off the template name, WebFile defaults to new.htm.

Generating the Output

Within your template file, you list files the same way you do with the List command. You may want to include the library name (<$dir>) in your list, since files in this type of listing can potentially come from more than one library.

If more new files exist than the maximum number you want to list on a page, you can include a “More Files” link. This link is actually a form, since it needs to submit data about the search back to WebFile. Here’s an example:

<$if $more>�<FORM METHOD="POST" ACTION="$WEBFILE.new.<$next>">�<input size=4 name="RANGE" value="<$range>" type=hidden>�<input size=12 name="FORM" value="<$form>" type=hidden>�<INPUT TYPE="submit" VALUE="More Files...">�</form>�<$end>

The macro <$next> inserts a code into the URL that tells WebFile where to begin listing new messages (without this parameter, it would begin listing from the beginning again). <$Next> is the only parameter you should use with New; you can’t supply this parameter explicitly.

Command Name�Search��Parameters�None��Default Template�find.htm��Form�Yes��Examples�$WebFile.search��Search is very similar to New, except that it searches for files based on a search string rather than a date. You set up the search using a form, just like with the New command. In the case of Search, the valid fields are:

Field Name�Function�Maximum Length��KEY�Text to search for�40��LIBRARIES�A list of file libraries to search�40��RANGE�Maximum number of files to list per page�8��FORM�The name of the template file�12��WebFile lists any files that contain the search text in the filename or the description. The search is case-insensitive. If you supply a list of file libraries in LIBRARIES, only those areas are searched; otherwise, all libraries are searched. You list your results with the same type of template used with List and New. The default template name for searches is find.htm.

If the number of matches exceeds your specified range, a “More Files” link can be generated this way:

<$if $more>� <FORM METHOD="POST" ACTION="/$WEBFILE.search.<$next>">� <input size=20 name="KEY" value="<$key>" type=hidden>� <input size=40 name=”LIBRARIES” value=”<$libraries>” type=hidden>� <input size=4 name="RANGE" value="<$range>" type=hidden>� <input size=12 name="FORM" value="<$form>" type=hidden>� <INPUT TYPE="submit" VALUE="More Files...">� </form>�<$end>

Searching a Library Subset

The Search command lets you search one library at a time, or a subset of libraries. This capability is useful on systems with a large number of libraries, since it lets you speed up searches by narrowing the scope of the search to one or more libraries.

To set up a subset search, you add a field called LIBRARIES to the form that you use to submit a search. For example:

<FORM METHOD="POST" ACTION="/$WEBFILE.search">� Search for files by entering a keyword:
�<input size=30 maxlength=40 name="KEY">
� Speed your search by narrowing the search area:�<input size=30 maxlength=40 name="LIBRARIES">
�<input size=4 maxlength=4 name="RANGE" value="15" type=hidden>�<input size=12 maxlength=12 name="FORM" value="FIND" type=hidden>�<INPUT TYPE="submit" VALUE="Search">�</form><p>

In the field labeled LIBRARIES, you can type either the name of one file library (like UPLOADS), a wildcard specification (like RIP* or WIN*), or a list of libraries or wildcards separated by spaces (for example, "RIP* WINDOWS UPLOADS GRAPH*").

In actuality, you will probably want to make LIBRARIES either a hidden field or a picklist selector, like this:

<select name=LIBRARIES>�<option value="*">Search All Libraries�<option value="WIN*">Search Windows Areas�<option value="RIP* GRAPH*">Search Graphics Areas�</select>

If you prefer to include each individual library in the picklist, use a <$RUN> macro to execute a $Webfile.Dir command, then build the library list into a picklist by using a customized template.

Command Name�Send��Parameters�Dirname.FileName��Default Template�None��Form�No��Examples�$WebFile.send.uploads./MYFILE.ZIP�$WebFile.send.utils./ZIPMGR.ZIP��The Send command lets users receive or “download� XE "download" �” a file from one of your file areas. You use Send to create links on your file listing pages that users can click to download the files.

You may be wondering why WebFile has a Send command at all – why not simply specify a link to the file itself? If you run Searchlight BBS, your files are probably located somewhere other than your HTML document directories. For security, Spinnaker doesn’t let users request files outside of those directories (otherwise, someone could download just about any file on your hard drive or network). However, WebFile lets users have access to these files via a controlled interface using the WebFile library and filename rather than the actual path. WebFile only allows downloads of files that are available in your file libraries – it does not permit someone to download an arbitrary file.

You use Send links in any file listing, like this:

<a href="$webfile.send.<$dir>./<$name>">�<$name>:

You may notice that there is a forward slash right before the filename. The Send syntax allows this slash to be present, but does not require it. Why use the slash? In most cases, users will be downloading binary files (like ZIP files) from your file libraries. The forward slash lets most Web browsers know that the actual filename follows, so the browser can suggest that as the “save to disk� XE "save to disk" �” file. You can still transfer files without the slash, but we strongly recommend including it.

Downloading from CD-ROMs

If you check the CD-ROM attribute for a particular file library, Webfile treats downloads from that area differently than a non-CD area. Specifically, it copies the file to the temporary directory before beginning the download (and clears the copy after the download is finished). Copying files in this manner improves system response, since CD-ROM drives are typically slower than hard drives.

Webfile also stages CD-ROM copying; that is, if several requests for files on the same disc or disc changer group arrive simultaneously, Webfile copies the files one at a time rather than copying them at the same time. Staging improves performance, since it reduces the number of times your CD-ROM hardware needs to seek a new disc position (or change discs, in the case of a multidisc CD changer).

Downloading Password Protected Files

Each file in a Webfile library can have a password associated with it. (Passwords are assigned when you upload a file, or they can be assigned by the System Administrator through the Edit command). If you try to download a password protected file by clicking on its name in a file listing, Webfile responds by returning a special HTML document called PASSWORD.HTM (located in your Webfile directory).

The PASSWORD.HTM document is a form that allows you to enter the password for the file. If you know the password, you can type it in and submit the form back to Webfile. If the password is correct, the download proceeds.

Command Name�Post��Parameters�[.Template][.Range]��Default Template�files.htm��Form�Yes��Examples�$WebFile.post�$WebFile.post.files.25��The Post command is used with a form to allow the system administrator to edit file descriptions� XE "edit file descriptions" �, add new files� XE "add new files" � to a library, move files� XE "move files" � between libraries, or delete existing files� XE "delete existing files" �. Only the system administrator (as defined in the LibMan utility program) can use this command; anyone else who tries to use it will receive an unauthorized request error message (error 401).

Post has few parameters because most of its input is obtained via a form. Post is only valid when submitted as the action on a form; you can’t use it as a link or type it directly into your browser.

A Post form requires the following fields:

Field Name�Function�Maximum Length��DIR�The name of the file library�8��FILE�Name of the file to edit, add, or delete�12��DESC�The file’s short description�40��TEXT�The file’s long description�76 chars x 1000 lines (text area)��COMMAND�Specifies the desired action: E, M, D, or K�1��NEWDIR�New directory name (when moving a file)�8��The DIR and FILE fields specify the file library and filename you want to add, edit, or delete. DIR must always specify an existing library; FILE must specify an existing file in that library, unless you are adding a new file.

DESC and TEXT give the file’s short and long descriptions, respectively. DESC is a line input containing up to 40 characters, while TEXT is a text area that can contain up to 1000 lines of 76 characters each. Note that when you edit an existing file, the Post command always replaces both the short and long description; hence, you need to create a template that loads your form with the old descriptions first (we’ll cover this in a moment).

COMMAND is a one-character field that tells WebFile what to do with the information in the form. COMMAND has four possible values. A value of ‘E’ means you want to edit an existing file or add a new file. WebMsg checks to see whether the file already exists, and updates the file’s description if it does. If not, it adds a new file to the file library. WebMsg also update’s the file’s size when it adds or edits a file; it does this by checking the physical file on disk.

When you add a file to a file library, you should first make sure that the file itself exists and is located in the directory specified as the “Path to Files� XE "Path to Files" �” for the library. Note that it is legal to “add” a file that doesn’t actually exist. If you do this, WebFile creates a library entry showing the filename and description, but marks the file as being “offline” with a size of zero and blocks any attempts to download it. If you accidentally add a file library entry without placing the file itself in the appropriate directory, just edit that file’s entry later and WebFile will update its listing.

If you want to delete a file, set COMMAND equal to ‘D’ or ‘K’. ‘D’ deletes the library entry for the file, so that the file doesn’t appear in WebFile listings, but doesn’t erase the file itself from your hard drive. ‘K’ both deletes the library entry and erases the file, freeing up disk space. Note: it is best to choose between ‘E’, ‘D’, and ‘K’ via a radio button, as in the example we’ll present in a moment.

You can move a file from one library to another if you set COMMAND equal to ‘M’. You must also specify a new library name in NEWDIR. You can type the new library name by hand, or create a picklist of existing libraries (our default templates demonstrate one way of doing this). WebFile physically copies the file, then copies the file description to the new library, and finally deletes the old file and old description (you may also edit the file description or title at the same time as you move it). If any error occurs during this process, the old file is left intact.

Finally, you can erase or change a file’s password with command ‘C’ (clear password) or ‘P’ (change password). If you use ‘P’ to change the password, supply a new password in a field called PASSWORD. Note that you cannot actually view a file’s password, since passwords are stored in an encrypted fashion.

When Post is successful, it returns a file listing beginning with the file that was just added or edited, or with the file immediately after the file just deleted. In this sense, Post acts like Files. The two parameters to Post let you supply a template name to use for the resulting file list and the number of files to list per page. If you don’t provide these two parameters, they default to FILES.HTM and 1, respectively.

Library Maintenance Strategy

To build a form for the Post command that lets you view and edit an existing file’s description, use the Files command with an alternate template name. Here’s an example of a general purpose Post template that you can use to edit, add or delete files. Call this document EDIT.HTM and place it in your Webfile directory:

<$while $list>�<form method=post action=/$webfile.post.files.25><pre>� Library: <input size=12 maxlength=12 name="DIR" value="<$dir>">� Filename: <input size=12 maxlength=12 name="FILE" value="<$name>">�Description: <input size=40 maxlength=40 name="DESC" value="<$short>">��<textarea name="TEXT" rows=16 cols=80 wrap=physical>�<$if $long><$while $text><$line>�<$end><$end>�</textarea></pre>��<p><input type=radio name="COMMAND" value="E" checked>� Add file or edit an existing file
�<input type=radio name="COMMAND" value="D">� Delete the library entry for this file
�<input type=radio name="COMMAND" value="K">� Erase the file and delete the entry
�<input type=radio name=”COMMAND” value=”M”>� Move the file to library: <input size=10 name=”NEWDIR”>�<input type=radio name="COMMAND" value="C">� Clear the password from this file
�<input type=radio name="COMMAND" value="P">� Change this file's password to: <input name="PASSWORD" size=20>
��<p> <input type="Submit" value="Post Changes"> </form> <p>�<$end>

Use the template with a link like $webmsg.files.<$dir>.<$name *>.1.edit. You can include this link in your regular Files template; use the <$isadmin> macro to have the link appear only for administrators. Note that since the DIR and FILE fields are editable, you can bring up the template for one file and manually change these fields if you want to add a new file or assign that file’s description to a new file. You can also change the directory name if you want to copy a file library entry from one directory to another (note that doing this does not copy the file itself, just the description).

The default FILES.HTM and EDIT.HTM templates included in WebFile implement the strategy shown here; refer to the templates for further examples.

Command Name�Upload��Parameters�[.Library][.Range][.Template]��Default Template�files.htm��Form�Yes��Examples�$WebFile.upload�$WebFile.upload.newfiles.25��Upload� XE "Upload" � allows your users to submit new files to your Web site libraries. Currently, Upload works only with Netscape version 2.0 Web browsers and uses Netscape’s new “multipart/form-data� XE "multipart/form-data" �” submission method.

An upload form should contain fields marked filename, short, long, and userfile. Optionally, it can contain a field called password if you want to assign a password to the uploaded file. An example is shown below:

<FORM ENCTYPE="multipart/form-data" ACTION="/$webfile.upload" METHOD=POST> ��The filename is: <input name="filename" size=14><p>�The short description is: <input name="short" size=40><p>��The long description is:
�<textarea name="LONG" rows=16 cols=76 wrap=physical>�</textarea>��<p>Send this file: <INPUT NAME="userfile" TYPE="file"> <p>�<INPUT TYPE="submit" VALUE="Send File">�</FORM>

If the upload is successful, WebFile adds the submitted file to the file library designated on the URL, or, if no library is specified, to your “Default Uploads” library, as defined under Preferences in LibMan. (If you want to disable uploading, you can do so by clicking the “No uploading” checkbox).

If you want to include a password on a newly uploaded file, add this line to your template:

	The Password Is: <input name=”password” size=40 type=password>

Then fill in the desired password in the field before submitting the form. (If you leave the password field blank, then the file has no password).

Uploading to Alternate Libraries

Users can upload a file to any library, not just the default library. In order to upload to a library, the user must have write access to that library. Use the Library Manager utility program to make sure that write access is granted to those file libraries in which you wish to permit uploads. Libraries for which write access is not available cannot be uploaded to, unless you are a system administrator. (If you have CD-ROM or other read-only libraries on your system, be certain that they are not configured for write access).

To upload to a library other than the default, add a field called destination to your Upload form. For example:

<input name=DESTINATION value="UPLOADS" size=10>

A user could type a new library name in the input box in order to upload to a different library. However, it is better to generate the destination field as a picklist showing all the libraries that are available for uploading. One way you can do that is by executing an inline $webfile.dir command with a special template. For example:

Submit file to directory: <$run $webfile.dir.*.destin>

In your Webfile directory, create the file DESTIN.HTM (the template for the $webfile.dir command) and enter into it:

<$accessmode write>�<select name=DESTINATION>�<$while $list>�<option value=<$dir>><$title>�<$end>�</select>

This template has the effect of generating a picklist of those file libraries that are available for uploading. Notice the <$accessmode write> switch. This is a template command that tells Webfile to list only those libraries for which a user has write access (thus eliminating from the picklist any read-only areas or areas for which uploading is not permitted). Please note that System Administrators can upload to any library, so <$accessmode write> doesn't have any effect if you are an Administrator.

Return Document

Normally, after an upload is completed, Webfile returns a file listing that begins with the newly uploaded file. Because it is possible to have write-only libraries (libraries to which a user can upload a file, but cannot download files or view the file list), the default list can be replaced with an HTML document from your Webfile directory. To do that, enter a hidden field in your Upload form:

<input name=RETURN value=ok.htm type=hidden>

In this example, Webfile will return the document OK.HTM from your Webfile directory upon completion of a successful upload to a library for which the user has write-only access. After an upload to a library for which read and write access is available, Webfile will still display the default file listing. You can force Webfile to always return the return document by adding this hidden line:

<input name=FORCE value=1 type=hidden>

On completion of the upload, WebFile displays a files listing beginning with the newly submitted file.�Spinnaker Warp Application

This chapter serves as reference for Warp� XE "Warp" �, Spinnaker’s URL redirector application. Warp allows a user to pick a URL from a picklist or form, and then it redirects the user’s browser to that URL.

Installation

To install Warp, simply copy the WARP.DLL file to your Spinnaker program directory (the same directory where your SPIN.EXE file is installed). (Warp is installed automatically by the Spinnaker setup program).

Using Warp

Since Warp only performs one action, it has no commands. It is always used as a form with one field called URL� XE "URL" �. The value of the URL field can be any qualified URL, even to another site, or another type of server such as FTP or Gopher. When the form is submitted, the Warp application sends a special result code that forces the user’s browser to request the URL specified in the URL field. Warp is usually used to create a picklist of URLs for the user to choose from. Here is an example:

<form method=POST action=/$WARP>�<select name=URL>� <option value=http://www.searchlight.com/ selected>Searchlight Software, Inc.� <option value=http://www.searchlight.com/whatsnew.htm>What's New� <option value=http://www.searchlight.com/company.htm>Company Information� <option value=http://www.searchlight.com/products/products.htm>Product Descriptions� <option value=ftp://ftp.searchlight.com/>Searchlight FTP Site�</select>�<input type=submit value=Warp!>�</form>

The URL field does not have to be a select field type. It can be any valid form field type, and it can be hidden.

How It Works

The Warp application takes advantage of a special HTTP result code number 302. When a browser receives a result code 302, it checks for a header field labeled Location which contains a URL. The browser then requests that URL as if it had requested it in the first place. This is all done without any input from the user.�Spinnaker WinCGI Application

This chapter serves as reference for Spinnaker’s WinCGI� XE "CGI" �� XE "WinCGI" � application interface. WinCGI allows a webmaster to run simple web applications and scripts. Spinnaker’s WinCGI conforms to the WinCGI v1.3 specification published by Robert Denny.

Before you try to use WinCGI, make sure that your Spinnaker Web Server is installed and able to serve HTML documents.

Installation

To install WinCGI, simply copy the WINCGI.DLL file to your Spinnaker program directory (the same directory where your SPIN.EXE file is installed).

For this release there is no configuration program. In order to complete the installation, you must edit your HTTPSERV.INI file and add a WinCGI variable to your Directories section. This variable must point to a directory where you will keep your WinCGI programs and scripts. For example:

WinCGI=c:\httpd\win-cgi\

Using WinCGI

WinCGI has only one command and it is optional. The command is a program to execute. The program must reside in the WinCGI directory.

Command Name�<program>��Parameters�none��Default Template�none��Form�Optional��Examples�$wincgi.wcgitest.exe

$wincgi.wcgitest.exe/spin��WinCGI launches the application and waits for it to exit. It then returns the output file created by the application.

How It Works

Each time it is executed, the WinCGI application creates a configuration file (WINCGI*.CGI) in the Temp directory. This file contains information about the request. It also creates a data file (WINCGI*.D) in the Temp directory. This file contains any attached data that was submitted with the request. If no attached data was present, the file will be zero length. The launched application creates an output file which the server returns to the user.

Using WCGITest

WCGITest� XE "WCGITest" � is a sample WinCGI application included in the package. WCGITest can be used to diagnose and test your WinCGI installation. In order to use WCGITest, you must place the executable file in your WinCGI directory. Whenever WCGITest is executed it returns the CGI configuration file. WCGITest can be called as a GET command such as:

	WCGITest

Or it can be called as a POST command in a form such as:

<form method="POST" action="/$WINCGI.wcgitest.exe">�<input name=HiddenField type=hidden value="This is a hidden field">�<select name="SelectField">� <option value="Searchlight Software" selected>� <option value="Spinnaker Web Server">� <option value="Microsoft's FTP Site">Microsoft's FTP Site�</select>�<input type=submit value=WCGITest>

�Webversi� XE "Webversi" � for Spinnaker Web Servers

Webversi is an entertaining game of skill that you can install and run on any Spinnaker Web Server platform. Webversi is a Spinnaker Page Application that takes advantage of Spinnaker’s rich Application Program Interface and DLL-based CGI features to provide a robust Web-based interface.

Installation

Webversi is highly customizable. You can use the default game templates and graphics that we’ve supplied, or you can modify them to create new formats, add your own game pieces, change colors and backgrounds, etc. We’ll cover the basic installation instructions first, then show you how to play the game. Finally, we’ll show you how to customize Webversi.

To install Webversi:

Run the Spinnaker Copy WEBVERSI.DLL into your Spinnaker working directory (the same directory that contains your SPIN.EXE file).

Create a subdirectory under your Spinnaker directory called WEBVERSI, and copy the remaining files into this directory.

Create a Spinnaker alias name called WEBVERSI that points to your Webversi directory. This will allow you to access Webversi documents using “/WEBVERSI” as the root-based pathname. (See below for more information about alias names).

security manager module (SECMAN.EXE) and make sure that security is either disabled for your WEBVERSI directory or set to the allow the appropriate groups or users.

The “alias name” for Webversi is important because it lets you refer to Webversi pages and graphics using the directory name “/webversi”, regardless of where your Spinnaker working directory is actually located. To create the alias name:

Start Spinnaker, click on Server Properties, and select the Aliases tab.

Click “Add”.

For “Token”, type WEBVERSI. For “Replace With”, type the full path to the directory into which you installed your Webversi documents and graphics (for example, “c:\spin\webversi\”).

�

Please note that Webversi must be installed in your Spinnaker working directory, not your document home directory.

To start Webversi, run Spinnaker and request the URL “/WEBVERSI” from your server (i.e. “http://mydomain.com/webversi”). Alternately, you can rename Webversi’s INDEX.HTM file and move it into another directory. To make the game available on your Web site, add a link to this page on your home page or another page on your site.

About the Game

Webversi is an implementation of the popular board game, Reversi (also called Othello(). Your opponent is the computer, which can be set to play at various skill levels.

To play Webversi, you place one of your white pieces onto the board in such a way that two white pieces completely surround one or more rows of your opponent's black pieces. When you do so, you capture your opponent's pieces and they're “flipped” to become your white pieces. Naturally, your opponent is going to try to do the same thing to you. The game ends when the board fills up or when neither side can make a legal move -- whoever has the most pieces wins.

When you start Webversi, all the board positions where it’s possible for you to move are highlighted with a light green square. To make a move, simply click the desired square. The computer will process your move, make its countermove, and present you with a new game board showing the combined results of your move and its countermove. Select your next move, and the game continues.

The Rules

Like most things, Webversi has a few rules. When it's your turn, you can only move to a square which causes two of your pieces to surround one or more of your opponent's pieces. Webversi helps you out by only allowing you to click squares that contain a legal move.

If in the course of playing you get to a situation where no legal moves are available, you must pass and allow your opponent to move again. When this happens, you'll see a message that says “Click here to Pass” below the playing board. Your opponent will pass when no legal moves are available. You can also pass your first move, if you'd like to have your opponent move first.

More importantly, though, you must make a legal move if you have one. In other words, you can't pass if it's possible for you to move. In fact, one of your opponent's strategies will be to force you into making moves you'd rather not make -- so, be on the lookout!

Winning

Most games end when all 64 squares on the board are filled. Occasionally, games end early if a position develops in which neither side can make a legal move. You'll see a “Game Over” message below the board when the game is over.

Reversi is an ancient game, and there has been much written about game strategy. For more information, try searching for the words “Reversi” or “Othello” on a Web search engine. We did, and found several interesting sites with a lot of information about the game.

How Webversi Works

You start Webversi by filling out an HTML form. You can select three aspects of the game: the skill level, the graphic to use for each player’s piece, and the “template” file that Webversi will use to draw the playing field. Each time Webversi moves, it renders the playing field based on the selected template file; it also encodes your current position, template name, graphics and skill level choices in each URL so that game play can continue from one more to the next.

We supply three board templates and five piece graphics with Webversi, but you are by no means limited to these choices. It's easy to create your own templates and add new graphics to Webversi, as we’ll see in a moment.

To start a Webversi game, create a form for which the action (URL) is “$webversi.form”. The fields that are required in the form are named as follows:

Field Name�Definition��SKILL�Skill level (1 through 4)��WHITE�Name of the graphic for the “white” piece (player’s piece)��BLACK�Name of the graphic for the “black” piece (computer’s piece)��TEMPLATE�Name of the template file (sans HTM extension)��Your template files must use the .HTM extension, and must be located in a directory called “Webversi” underneath your main Spinnaker working directory. When you specify a template name, you omit the .HTM extension; Webversi automatically adds this extension and looks for the file in the Webversi directory.

Your image files can reside almost anywhere on your system, as long as they are in a Spinnaker accessible directory. Generally, you only give the graphic filename on the input form. Within your template, you can pre- or postpend the graphic name with a directory path or an extension. Our default board uses graphics that are located in the Webversi directory itself. If you want to add new graphics to Webversi, place your files in this directory and update the INDEX.HTM file to allow the user to select your graphics.

Tip: The default piece graphics we supply with Webversi are 40 pixels by 40 pixels in size. If you want to create new graphics that can be mixed-and-matched with our default choices, you should create graphics that are exactly this size. If your graphics are too large or too small, the playing field will not be square.

If you want to use smaller or larger graphics, you can do so, but you should create alternate start-game forms that only allow graphics of the same size to be mixed. Note that you will need to supply your own graphics for the “blank” and “legal move” squares as well as those for occupied squares.

Templates

Template files control what the Webversi playing field looks like, and are the key to creating alternate board looks. Within a template, we use special Spinnaker macros to generate the playing board and insert special messages. The complete list of Webversi macros is:

Macro�Definition��<$board>�The board matrix, expressed as a string. This is used to create links.��<$winning>�Conditional: true if the player is winning��<$losing>�Conditional: true if the player is losing��<$black>�Total number of black pieces (computer’s pieces) on the board��<$white>�Total number of white pieces (player’s pieces) on the board��<$canpass>�Conditional: true if the player can pass (has no legal move)��<$pass>�The URL a player can select in order to pass��<$newgame>�Conditional: true on the first board of a new game��<$gameover>�Conditional: true if the game is over (no more legal moves)��<$crow>�The row number (1-8) of the computer’s last move��<$ccol>�The column number (1-8) of the computer’s last move��<$hasmoves>�Conditional: True if the player has legal moves��<$nextrow>�Used to draw the board. True while there are more rows to draw.��<$nextcol>�Used to draw the board. True while there are more columns to draw.��<$row>�Current row (while drawing the board)��<$col>�Current column (while drawing the board)��<$ismove>�True if current row/column is a legal move for the player��<$isblank>�True if current row/column is a blank square��<$piece>�Returns the image name for the piece in the current row/column��<$whiteimg>�Image name for the player’s piece��<$blackimg>�Image name for the computer’s piece��<$iswhite>�True if current row/column contains the player’s piece��<$isblack>�True if current row/column contains the computer’s piece��Used together, these macros let you render a playing field that uses selected graphic images for the player’s and computer’s pieces, generate links that allow moves to be made, report the score, and tell whether the game is over.

Below is a simple Webversi template file. We’ve omitted fancy formatting and graphics so as to show you the basic “guts” of a board, and we highlighted the macros and conditional statements. For more examples, take a look at the three example boards we’ve provided with Webversi. If you need more information about Spinnaker’s standard Dynamic HTML constructs (the <$if> and <$while> statements you see in the templates) you should consult the Spinnaker documentation.

<title>Webversi Game in Progress</title>

<$while $nextrow>

 <$while $nextcol>

<$if $ismove>

 <A href="/$webversi.<$row><$col><$board>">

 </td>

<$else>

 <$if $isblank>

 </td>

 <$else>

 <img src="/webversi/<$piece>" border=0 hspace=2 vspace=2></td>

 <$end>

<$end>

<$end>

<$end>

<$if $crow><i>I moved to row <$crow>, column <$ccol>.</i><$end>

<$if $hasmoves>
To move, click on a highlighted square.<$end>

Score: <img src=/webversi/<$whiteimg>> = <$white>,

 <img src=/webversi/<$blackimg>> = <$black>

<$ifnot $gameover>

 <$ifnot $hasmoves>You have no moves! <$end>

<$end>

<$if $canpass>

 <a href="/$webversi.88<$board>">Click here to Pass.

<$end>

<$if $gameover>

 <blink>Game Over!</blink>

<$else>

 <i>

 <$if $winning>Looks like you're ahead!

 <$else><$if $losing>Looks like you're losing!

 <$else>Looks like a tie game!

 <$end>

 <$end></i>

<$end>

Click here to Exit or Start a New Game��

� TC "Spinnaker Database Application (SpinDB)" \l 1 �Spinnaker Database Application (SpinDB)

Introduction

The Spinnaker Database Application program (SpinDB) is a Spinnaker application that allows you to integrate databases into a Web site. SpinDB can perform database lookups and queries, build documents and lists using database information, and allow posting and updating of database records. Like other Spinnaker applications, SpinDB uses templates to allow for complete flexibility in its results, and supports Spinnaker user, group, and IP-level security. SpinDB supports relational database models and allows you reference information from linked tables.

Spinnaker uses the Borland Database Engine for its low-level database access. That means you can use any database that’s supported by the BDE, including Dbase, Paradox, and any ODBC or SQL data source.

Please note that SpinDB may not have been included in your Spinnaker license, depending on the version of Spinnaker you purchased. If you are interested in upgrading to a license that includes SpinDB, please contact Searchlight Software for additional information.

Limitations

SpinDB lets you use existing databases on your Web site, but SpinDB is not a utility for creating or managing databases. As well, the process of designing databases is beyond the scope of this documentation.

If you do not currently have a database package, you will need to obtain one and learn how to use it before you can use SpinDB. The recommended package to use with Spinnaker is Paradox 7.0 from Borland; the BDE has fast native support for Paradox files, and you can also use Paradox to maintain other Spinnaker databases (like the Spinnaker user file).

Terminology

This manual uses the same terminology as all Borland database products and most other Windows based database systems. Note the distinction between a Table and a Database.

A Database is a collection of one or more files that encompasses the data for a particular application. In non-networked systems, a database is usually a directory on a hard disk. A database usually contains all the related files for a relational database system.

A Table is an individual file in a database. A table is a collection of data items that all have the same record structure. Simple tables are often stored in a single file; more complex tables can include index files and memo files.

A Record is one unit of data within a table. It contains all of the data associated with a particular entry in the table. A record is the smallest unit of data that can be returned when searching a database.

A Field is one element of data within a record. Fields are the smallest unit of data you can address. SpinDB supports character-string fields, as well as number, date, time, logical and memo fields.

An Index is a structure that allows you to perform fast lookups and searches on tables. Whenever you look up a record by providing a key value, you are implicitly searching an index. Tables can have more than one index; when you set up a SpinDB view for a table, you also tell SpinDB which index you want to use.

A Key is the data you need to find, or “look up”, a record in a table. Keys and indexes are related; a key always specifies data that is expected to be found in the fields associated with the selected index. For example, in a table indexed upon the field LASTNAME, valid keys might be “Jones”, “Chang”, or “Martinez”. Keys can encompass one or several fields; in SpinDB, we use either commas or periods to separate fields in a key, depending on where the key is specified. SpinDB also provides conventions for expressing non-alphanumeric keys (like numbers, dates, or logical values) as printable characters.

Views and Links are SpinDB-specific terms that describe database resources as the apply to Spinnaker. Views and links encompass databases and tables plus security settings, template directories, filters, and other settings that apply to the Web view of a databases. We’ll cover views and links in more detail later in this documentation.

Getting Started

If you installed SpinDB from an installation disk or self-extracting installation program, no further installation steps are required. To manually install SpinDB from a ZIP file or other source, take the following steps:

Place the files SPINDB.DLL, SDBRST.DLL, SDBMAN.EXE and SPINDB.ZIP in your Spinnaker working directory (the same directory which contains SPIN.EXE)

If you are installing SpinDB for the first time, UnZip the SPINDB.ZIP file using the -D switch. (This creates a subdirectory called SPINDB and fills it with several SpinDB control files). Don’t perform this step if you are merely updating an existing installation, since it will overwrite your existing views and links.

Setting Up SpinDB

Before you use SpinDB on your Web site, several preparations are necessary. First, you need to decide which databases and tables you want to make available in your Web site and tell SpinDB where to look for them. If you have relational databases, you need to define how your databases are related so that SpinDB can automatically make linked tables available when a master table is used. If you want to restrict the use of databases to certain customers, you need to set up security. Finally, you will need to create HTML forms that contain URLs which activate SpinDB commands, and HTML documents that define the style and structure of the results.

Database Manager

To begin the setup process, run the Database Manager utility program (SDBMAN.EXE). You can add an icon for SDBMAN to your Spinnaker program group or desktop to facilitate convenient launching.

The SDBMAN program is a utility for managing views. A view is a name that encompasses both a database and a table, plus security settings, linked tables, and other information that SpinDB requires. When you write SpinDB URLs within your HTML pages, you always refer to a view, never directly to a database or a table.

Your main screen shows a list of View Names, each with a Description and a Template Directory:

�

The View Name is an arbitrary string of characters that you’ll use to refer to the databases, tables, and other resources associated with the view. This name can be anything, but it should not contain spaces or non-alphanumeric characters. The view name can be the same as the name of the database or table, but doesn’t need to be.

To create a new view, click File and then New. The database manager prompts you to enter a new view name, creates the view, and opens a window to allow you to specify the view’s properties. This is where you’ll actually associate databases, tables, and filters with a view. There are three tabs here: General, Links, and Security.

General Tab

�

On the General tab, specify the type of view you are creating, a description of the view, and a Template Directory. The view type can be query (used to look up records in a table), add (to add new record), edit (to modify existing records), or delete (to remove records). Each view can be of only one of these types (but you can associate multiple views with a given table, enabling you to perform more than one type of operation).

The Template Directory is the directory where SpinDB will look for template files (HTML documents that serve as the templates for creating Web pages that contain database information). All of the templates for a particular view must be available in the specified directory. Templates are always stored with the .HTM file extension. You can click the browse button (“…” button) to use the directory tree browser, if you prefer.

Links Tab

In this section, you define the view’s links. Links are the components of the View; a link includes a database and a table name, and can include and index name and relational information.. A view can have any number of different links, and links are organized in a tree fashion (meaning links can have other links).

�

Simple views, like the one shown here, have only one link, which includes one database name and one table name. A complex view with relational fields can have many links. Generally speaking, you need one main link and one additional link for each relational field in your database.

Every view must have one Main Link (which is created automatically). On the right-hand portion of the screen, fill in the Database Name and Table Name of your primary table. For Database Name, you can fill in either the directory where your table is located, or the Borland Database Engine alias name for that directory (SpinDB supports the use BDE aliases, but does generate them). For Table Name, fill in the name of the actual table. You can click the “…” button to the right of Database Name or Table Name to select from a directory or table list.

For the Index Name, enter the name of the index which you want to use when referring to the table via this view. An index specifies how lists of records are ordered, and enables you to perform efficient searches. Each view can have only one index associated with it, but a single index can encompass multiple fields; you can also create multiple views on the same table or change indexes on the fly within your templates, if you want to create lists or searches using different indexes. If you use Paradox tables, the Database Manager can provide a picklist of valid index names from which you can choose. For other types of tables, you must enter a valid index name manually. If you leave the Index Name field blank, SpinDB will use either the primary index (for Paradox tables) or no index (for other types of tables).

Check the This table is remotely updated checkbox if you are using a table on a network drive that might be updated by another computer while SpinDB is using it. This ensures that the data SpinDB uses is always up-to-date. If you’re using a table on a local drive that won’t be updated by any remote workstations, you can uncheck this box (which results in slightly better performance).

If you have relational databases, you can create additional links that show the relationships between fields in your main table and related tables. We’ll cover this topic in a moment.

Filters

In addition to the index, each link can have an optional Filter. A Filter is an expression that tells SpinDB to look at only a subset of the records in the table when addressing that table. For example, if your table contains a field called STATE which contains a two-letter state abbreviation, you can use a filter like (STATE=’NY’) to restrict the view to only those records that contain the letters NY in the State field. To add or edit the filter associated with a link, click Edit Filter.

When a filter is used, the view you create is automatically restricted to those records which satisfy the filter expression. In other words, when you use the view in an HTML document, only the filtered records are available. Searches on the database will be restricted to those records, and lists will contain only the filtered records. In effect, the view appears to be a table that contains only the records selected by the filter. This is an extremely handy feature, and one of the main reasons that SpinDB uses the concept of a view rather than direct access to a table.

Filters are not restricted to constants; you can make filters that use data from HTML forms. That way, your customers can create their own restricted views of a database by typing search keys into a form or otherwise selecting search criteria with picklists or radio buttons.

You can create very complex filter expressions using logical comparisons and boolean operators. We will cover filters in more detail later in this manual.

Relational Links

A complex database containing relational links between tables can be expressed by adding additional links to the main link in a view (or by adding links to sublinks, if you have a nested relationship). To add a new link to an existing link, position your cursor on the existing link and click New Link.

A relational link contains fields to enter the Database and Table names, just like your main link. But the relational link also contains fields for entering a Detail Field and a Master Field.

The Detail Field is the name of the field in the table that contains data which matches the data in the Master Field of the table above it in the relationship tree. In other words, the entire set of records in the table of a link which is not the Main Link is restricted such that only records having data in the Detail Field which exactly matches the data in the Master Field of its parent table are available.

The Master/Detail tree is often used to build one-to-many relationships (for example, a customer account which can have one or more invoices). In such a database, you would link the customer’s name or customer’s number from the customer table with a matching field in the invoice table. Then, when a particular customer record is selected from the main table, only that customer’s invoices are available in the invoice table.

A view with multiple links might look something like this:

�

It is best to use SpinDB to express links that you have already created using a database program. Please review your database program’s documentation or a database reference manual if you want to learn more about relational databases.

Security Tab

The Security Tab in the Database Manager lets you assign security settings to a particular view. This tab works much like the Security tabs in other Spinnaker applications, allowing you to set security by Group, IP Address, or User.

�

Check Enforce Security if you would like to limit the view to a particular subset of groups, users, or IP addresses; uncheck this box if you would like the view to be available to anyone. Note that all new views start off secure, so you will need to explicitly uncheck the Enforce Security box if you would like a view to be public.

For secure views, select which groups can use the view by moving one or more group names from the lefthand box to the righthand box. To restrict by user name or IP address, select those tabs. Once a view is secured, it can only be used by someone with the proper security; an attempt to access the view by unauthorized persons will fail.

SpinDB’s security settings work exactly like those in Spinnaker’s Security Manager utility. For more information about the way Spinnaker and SpinDB use security, please see the Security Manager section of this manual.

Check Allow Dynamic HTML Macros if you want SpinDB to interpret any Spinnaker Dynamic HTML macros that might be found within fields in a table (macros are HTML tags that begin with <$). Normally, SpinDB does not treat such macros as commands, thus preventing data from a table from interfering with the command macros used to structure your template. In special cases, you might want to allow SpinDB to interpret the macros contained within table data. You can accomplish this by checking this box.

For Edit views, you can also check or uncheck the Allow Owner to Modify setting. This setting lets the owner of a particular record update the record, even if that person does not satisfy the Group/User/IP security restrictions for the view. For more information, see Record Ownership. Note that this checkbox only appears for Edit views.

Using SpinDB

Once you have used the Database Manager to define views into your databases, you are ready to design the URLs, forms, and templates you’ll need to put your data online.

There are two basic ways to activate SpinDB: you can use a SpinDB command as a plain URL (i.e., as a link in a page), or you can execute a SpinDB command in conjunction with a form. When you use the latter method, you can allow users to provide search keys and add or modify records in the database.

All SpinDB commands require that you create a template. A template is simply an HTML document that contains special codes where you want SpinDB to insert information from your database. If you are familiar with Spinnaker’s Webmsg or Webfile applications, you will find that SpinDB uses a similar templating technology.

A Simple Query

The simplest SpinDB command is a query that returns a single record using a key field. You can use this type of command with any query view that specifies an index (or a view on a Paradox database that has a primary index). The syntax for a simple query is:

	$spindb.query.template.view.key

The $spindb.query part of this URL tells Spinnaker to run the SpinDB application, and tells SpinDB that we are performing a query. Template is the name of the HTML file SpinDB will use to generate the output. View is the name of a query view that’s been set up using the Database Manager, and key represents the data we’re looking for. An example of a typical SpinDB command might be:

	$spindb.query.exhibit.vinyl.0078

In this command, we’re querying a record from the view vinyl using the lookup key 0078. The template file for the output is exhibit.htm. The template must exist in the Template Directory as it is specified in the Database Manager for the view.

Key lookups like this only work if there is an index associated with the view (or if you are using a Paradox table which has a primary index). To query a database on a different index, you need to set up a separate view which specifies that index.

The key specified on a URL doesn’t have to be an exact match for a record in the database. If an exact match is not available, SpinDB finds the record with the next larger key.

If the key for the record you’re trying to find contains spaces, quotation marks, punctuation, or other special characters, you can represent the special characters by using a standard encoding sequence: a tilde character followed by two hexadecimal digits. For example, a space is represented by ~20. Most of the time, you generate links like these automatically; SpinDB provides a macro, <$xfield>, that returns the contents of a field with the proper encoding in place. (Encoding is required only for keys that are expressed on a URL; when filling out a form, encoding is not necessary).

If the query is successful and a record is found, data from the found record appears as a web page in the target web browser.

Multikey Lookups

If the index associated with a particular view is a compound index (that is, an index which is based on two or more fields), you can specify as many keys as you need to find the record you’re interested in. Simply separate the keys with periods. For example, an index based on the fields LASTNAME and FIRSTNAME could be used this way:

	$spindb.query.names.customer.Smith.John

You can supply as many keys as you need in this fashion. (If a key contains spaces or periods, it must be encoded, as described above). You can supply fewer keys than there are fields in the index; SpinDB substitutes blanks or default values for the unspecified keys.

What’s in a Template?

A template is the blueprint that tells SpinDB how to present information from your database. Templates are like regular HTML files and can contain ordinary HTML text and commands, but templates also contain special SpinDB macros that tell SpinDB how to process your database and where to insert data into the document. Templates can also contain any of Spinnaker’s Dynamic HTML macros.

When you create a view, you supply a Template Directory. All the templates you want to use with that view should reside in this directory. Templates always use the extention .HTM. You can have more than one template associated with a particular view, and select the template you want by placing its name on the SpinDB command line (as shown above). Note that the file extension is not included on the command line.

Field Macros

<$field fieldname>

The basic SpinDB macro is <$field fieldname>, where “fieldname” is the name of a field in your database. This macro inserts the contents of the named field in the currently selected record of the main table in your view. As an example, let’s say you have a simple database containing the fields NAME, BIRTHDATE and EMAIL_ADDRESS. To display these fields in a template, you would write something like this:

	Name: <$field NAME>�	Birthdate: <$field BIRTHDATE>�	Email Address: <$field EMAIL_ADDRESS>

Of course, you can dress up the display by surrounding the <$field> tags with whatever HTML formatting commands you would like.

SpinDB supports all the major database field types, including string, date, time, number, logical and memo fields. String fields are displayed as they appear in the database. For binary field types, SpinDB interprets the binary data and returns it in a displayable format, as follows:

Date fields return the Julian number version of the date. You can convert the Julian number to any date format you like by using Spinnaker’s <$sys.fdate> function. For example, a better way to express the BIRTHDATE field might be:

	<$sys.fdate <$field BIRTHDATE> m-dd-yy>

Time fields return the time as the number of seconds elapsed since midnight. Use the <$sys.ftime> macro to convert this number into an hours-and-minutes display.

See page � PAGEREF DateAndTimeFormatting * MERGEFORMAT �40� for more information about <$sys.fdate> and <$sys.ftime>.

Number fields return the number as a string of decimal characters. SpinDB automatically supports several different number types, including short and long integers and floating point values.

Logical fields return the character “1” if the field is true, or nothing if the field is false. This behavior is geared to work best with Spinnaker’s conditional macros ($if, $ifnot, $while). For example, if your database has a logical field called SOLD, you can write:

<$if $field SOLD> The item was sold! <$else> The item is still available! <$end>

Memo fields are typically used to store large blocks of text in a database. SpinDB supports the use of memo fields as long as the memo field contains readable text; binary memo fields are not allowed.

If a memo field is relatively short (less than 2000 characters), you can insert it directly into your document with the <$field> macro. For larger memo fields, the best strategy is to insert the memo field’s text one line at a time. See Working with Memo Fields, below.

If you are working with a view that contains multiple tables, you can specify a table name as well as a field name with this macro. The syntax is tablename.fieldname. To refer to the field “Lastname” from the table “Customer”, use: <$field customer.lastname>. (You can also use the select macro shown below to set a new table as the default).

<$xfield fieldname>

The <$xfield > macro is similar to <$field>, except that it encodes the field contents in a format that is suitable for use on a URL. Specifically, spaces and other nonalphanumeric characters are represented as a tilde followed by a 2-digit hexadecimal number (i.e. space is represented as ~20). Use <$xfield> instead of <$field> when you want to construct a SpinDB URL using data from the current record in a table.

You can also use the <$xstring string> macro to encode an arbitrary string of characters with hex encoding.

<$select tablename>

In a view that contains multiple tables, you normally refer to fields in the main table without a table name and fields in linked tables by using the tablename.fieldname syntax. If you want to use a large number of fields in a linked table at once, though, it is often more convenient to make the alternate table the default table. That’s what <$select> does; it temporarily makes any table in the view the “main” table, so that references to fields within that table don’t need to start with the table name.

Once you <$select> a table, all of the SpinDB macros that are table-specific now work on that table (including macros like <$nextrec> and <$found>).

The selected table remains the default until your template ends or until you use <$select> again to select another table as the default. When you are done working on an alternate table, you will often need to use <$select> again to reselect your main table.

Command Macros

SpinDB implements a large number of command and informational macros that you can use in your template to loop through the records in a table, check for errors, and perform other special functions.

<$error>

If SpinDB encountered an error while processing your request, this macro returns the error message. You can also use this macro in an <$if> statement if you want to conditionally exclude a part of your template when an error occurs.

A typical SpinDB template is structured this way:

	<$if $error>�	 <$error>�	<$else>�	…�	<$end>

Error messages are generated if SpinDB can’t find the view, table, or template you specify. This macro can also report more involved error messages that originate from the Borland Database Engine.

<$found>

This macro lets you know whether the record you are searching for could be found in the table. It is true if at least one record matches the key or other search criteria you specified, and false otherwise. <$Found> is also false if you use <$nextrec> to advance to the end of the table or beyond the current page count.

<$nextrec>

In cases where you want to display data from more than one record on a Web page, you can use the <$nextrec> macro in your template when you want to advance to the next matching record. <$Nextrec> doesn’t display anything; rather, it causes SpinDB to load to the next record, and you can use the <$field> macro to display the new data.

In views with indexes, <$nextrec> advances to the next record in the order specified by the index. If you don’t specify an index with a view, then <$nextrec> returns records in the default order for the table (usually the physical order in which the records are stored, or the order of the primary index for Paradox tables).

Most templates that are designed to display multiple records will use <$found> and <$nextrec> in a <$while> loop. Here is an example:

	<$while $found>�	 Name: <$field NAME>
�	 Birthdate: <$field BIRTHDATE>
�	 Email Address: <$field EMAIL_ADDRESS><p>�	 <$nextrec>�	<$end>

This fragment will display one or more records from a database. If you use a filter, only those records matching a particular selection criteria are displayed; otherwise, the loop continues until the last record in the database is reached.

In multi-table views, <$nextrec> (and the related macros shown below) operates on the main table or the table most recently selected with <$select>. You can execute <$nextrec> on a specific table by specifying the table name as a parameter: <$nextrec tablename>.

<$prevrec>

This macro works like <$nextrec>, except that it positions you on the previous record in the table rather than the next.

<$relrec>

This macro lets you move forward or backward by a specific number of records by specifying the relative record count as a parameter. For example, <$relrec 5> moves you ahead 5 records; <$relrec -2> moves you backward 2 records.

<$nextunique>�<$prevunique>

The <$nextunique> macro is similar to <$nextrec>, except that it advances to the next record which has a unique key in the currently active index. For example, suppose a customer list contains an index called STATE, which is built on a field that contains the two-letter abbreviation for the state in which that customer lives. Naturally, you might have multiple customers that reside in the same state. When performing operations on this database, <$nextunique> advances you to the next customer who resides in a different state than the current customer. If the current customer resides in NY, then <$nextunique> would find the first customer from OH. Another <$nextunique> statement would advance you to OK, etc. A loop that uses <$nextunique> instead of <$next> is guaranteed to receive only one record for each unique instance of the indexed field (in this case a state name). In the example of a STATE index, you could use <$nextunique> to build a list containing the names of all the states in which you have a customer, without listing states two or more times if the state contains two or more customers.

<$Prevunique> works like <$nextunique>, except it finds the previous unique key.

You can supply an optional numeric parameter to <$nextunique> and <$prevunique> which tells them how many fields of a multifield index to use for the comparison. Suppose your index in the previous example was actually built on the fields STATE and CITY. You could use the command <$nextunique 1> to advance to the next unique state name or <$nextunique 2> to advance to the next unique city name. Notice that parameter corresponds to the position of each field in the active index, not necessarily that field’s position in the table; the same parameter could do something different when a different index is active.

<$findrec>

The <$findrec> macro looks up a specific record, using the parameter as a key. For example, <$findrec SMITH> will attempt to look up a record for which the key field is equal to “SMITH”. On views which have multifield indexes, you can specify successive keys separated by commas; for example, <$findrec SMITH, THOMAS>. If an exact match is not found, then <$findrec> positions you at the record with the next largest key.

If your index contains a nonalphabetic key (such as a number, date, or time), you should express the key in the same format as is returned by the <$field> macro (described above).

<$reccount>

This macro returns the total number of records in the table. This count is not affected by the current filter or index.

<$activecount>

This macro returns the number of active records in the current view. Active records are records that are accessible. This number is often the same as the number returned by <$reccount>, but can be smaller if an index or a filter is used to restrict the view. (Note that <$activecount> can take a significant amount of time to compute on large tables, whereas <$reccount> is a relatively quick operation regardless of table size).

<$uniquecount>

After a call to <$nextunique>, you can use the macro <$uniquecount> to return the number of records which had to be skipped in order to find the next unique record. <$Uniquecount> is handy when you want to display summary reports; it gives you a way to compute the number of records that match a particular key value. Note that <$uniquecount> is only valid after you use <$nextunique> or <$prevunique>.

<$setpage count>

Often, you’ll have a table that contains too many records to display on a single page. You can use the <$setpage> macro to divide your table into “pages”; each page can contain only the number of items you specify. For example, if you add the macro <$setpage 10> to your template, SpinDB will return a maximum of 10 items per page.

You always use <$setpage> before your <$while $found> loop begins.

<$key>

This macro returns the key for the current record. A key is the data in the field or fields that corresponds to the currently active index. When the index contains multiple fields, <$key> and other key macros return a string containing all of the fields required to look up the active record, separated by periods.

<$nextpgkey>�<$prevpgkey>

If you use <$setpage> to set a maximum item count per page, these macros return the key field for the item that begins the next or previous page (i.e. the next or previous group of items). These macros let you create links that a user can click to advance to the next or previous page of results. For example:

<a href=/$spindb.query.template.view.<$nextpgkey>> Advance to the Next Page

Recall that the syntax for the $spindb.query command calls for a key field as the last parameter. Instead of typing a literal key, the <$nextpgkey> macro automatically returns the key that starts the next page of results, based on the current page and the value given in <$setpage>. Similarly, <$prevpgkey> could be used to return to the previous page.

If there is no next or previous page – if you are already at the end or the beginning of the table – these macros return blanks. You can use them in an <$if> statement to test whether a next or previous page exists, and suppress the Next or Previous page link based on the result. For example:

<$if $nextpgkey>� <a href=/$spindb.query.template.view.<$nextpgkey>> Advance to Next Page �<$else>� You are at the end of this list.�<$end>

<$firstpgkey>�<$lastpgkey>

These macros work like <$nextpgkey> and <$lastpgkey>, except they return the key to the first and last pages in the table. You can use them to create links that return a user to the top of a list, or go directly to the last page. These macros require that you use the <$setpage> macro first.

Note that even if you only want to display one item from your table at a time, you still have to use the <$setpage> macro before you use any of the other paging macros. Use <$setpage 1> if you only want to display one item per page.

<$pagesize>

This macro returns the current page size, as set by <$setpage>.

<$setfilter>�<$setindex>

You can dynamically change the filter or the index for the current view using these macros. Specify the new filter or the name of the new index as the parameter; for example, <$setindex LASTNAME>. For more information about filters, see Using Filters with Forms.

After a new filter or index is selected, the currently selected record may be invalid. It is best to use <$findrec> immediately after changing the filter or index so that you know that you are positioned on a valid record. Using <$setindex> or <$setfilter> will also invalidate previously created bookmarks.

<$setbeg>�<$setend>

These macros set the current record to the beginning or end of the active set, respectively. The active set means the set of all records that match the active index, filter, or SQL query (which can be different than the set of all the records in the table).

<$bof>�<$eof>

These boolean macros return true if you are positioned at the beginning of file or end of file, respectively. You can use them in conjunction with an <$if> statement or in a <$while> loop.

<$getbook name>�<$settobook name>

Bookmarks let you save and retrieve your position within a table. When you use <$getbook> with a symbolic bookmark name (for example, <$getbook HereIAm>), SpinDB sets a “bookmark” to the current record. Later, you can return to that record with <$settobook HereIAm>. Bookmarks are useful whenever you want to mark a position within a table and return to it after visiting other records in the table.

You can use any alphanumeric name for your bookmarks, and there is no limit to the number of different bookmarks that can be used within a template.

If you change the active filter using <$setfilter>, a previously created bookmark might not work (because the bookmarked record might not exist in the newly filtered table). If you change the active index with <$setindex>, then all previously created bookmarks are invalidated.

Update Macros

The macros in this group can be used to modify fields in the currently active record.

<$setfield fieldname>

Miscellaneous Macros

<$hitcount>

The <$hitcount> macro lets you increment the value of a numeric (integer) field in your database. Supply the name of the numeric field as a parameter; for example, <$hitcount HITS>. In this case, we assume HITS is the name of an integer type field in the current table. Using <$hitcount>, you can keep track of the number of times a particular record has been queried. If the field you increment is part of an index, you can also use <$hitcount> to perform special functions like ad rotation.

<$view>�<$table>

These macros return the name of the current view and table, respectively. (You can use the <$select> macro to change the name of the selected table in a multi-table view).

<$showfilter>

This macro displays the text of the currently applied filter (which can either be the filter associated with the view, or one set with the <$setfilter> macro).

<$param n>

Use <$param n> to return the nth key parameter of the current SpinDB command, as passed via the URL. For example, if the URL is $spindb.query.names.customer.Smith.John, then <$param 1> would return the word “Smith”, <$param 2> returns “John”, and <$param 0> returns “customer”.

<$xstring string>

This macro encodes an arbitrary string of characters using a hex encoding sequence. Strings encoded this way can be passed as key values on a URL.

SQL Statements

<$sql tablename SQL-Statement>

The SpinDB macro <$sql> lets you execute an SQL (Structured Query Language) statement from within your template. SQL is a standard database query language that lets you construct complex database queries efficiently. SQL statements offer more sorting and selection options than standard indexes or filters.

The syntax for SpinDB’s SQL macro is: <$sql tablename SQL-Statement>. Each SQL macro you execute creates a new table containing those records which match the criteria in your SQL statement. The tablename parameter assigns a name for this table. You can then use the new table name to extract the SQL results, just as if it were another table in the current view. (The table created by the SQL statement is a temporary table that is automatically deleted when the current SpinDB command ends. If the SQL result is small, this temporary table is often created entirely in memory).

Unlike a filter or an index, an SQL query does not affect the currently active table or index. To extract information from the SQL query result, you need to reference the new table by its name. You can use <$select tablename> to make the SQL table the active table after executing an SQL macro.

Here is an example of how an SQL statement might be used within a template:

<$sql newquery SELECT * FROM CLIENTS WHERE Name LIKE ‘%Will%’>�<$select newquery>�<$while $found>� <$field $Name>
� <$nextrec>�<$end>

This query selects records from the target table (CLIENTS) where the field ‘Name’ contains the word ‘Will’. This is a powerful query because it selects any record which contains the letters ‘Will’ in the Name field, regardless of the position within the field. For example, this query would select ‘Will Smith’, ‘William Miles’ and even ‘Ron Williams’. An SQL statement is the only way to perform this type of query; it can’t be done with a filter or an index.

As with any SpinDB command, you can insert macros within your template if you want to use a variable instead of a constant for specific parameters. For example, you could replace the text “Will” in the above example with <$field firstname> to construct an SQL query based on the contents of the current record.

Notice that the <$select> tag is used to select the new table (called newquery) so that its results may be used. Because each SQL statement has a unique name, you can execute more than one SQL statement within a template and use the results of each by referring to the name of the temporary table. (The tablename.fieldname syntax may also be used to access fields in the new table).

SQL queries are most often used in conjunction with a dedicated SQL server on a network. If you have a dedicated SQL server, please consult your server’s documentation for more information about how SQL statements work and what commands and syntax are available on your server.

SpinDB can also perform SQL queries on local tables, such as Dbase or Paradox tables. This is called Local SQL because all of the SQL commands are executed on the local machine. Local SQL is slower and less efficient than dedicated SQL, but it does let you perform operations that might otherwise be impossible. For a complete description of the local SQL language available in SpinDB, please open the included Windows help file, LOCALSQL.HLP.

Working with Memo Fields

A memo field is a special type of database field that can be used to store large amounts of information. Because a memo field is unbounded in length, SpinDB implements special macros for handling memo fields.

If you know that a memo field will never contain more than about 4k of text, you can use the memo field as you would an ordinary field; that is, you can display it with the <$field> macro. If you want to handle larger memo fields, or if you want to insert special HTML formatting between the lines of a memo field’s text, you can use these macros to implement a loop that reads a memo field one line at a time.

<$begmemotext memofieldname>

This macro initializes a memo field; as the parameter, you supply the name of the field in your table that contains the memo text. For example, <$begmemotext comments>. This macro doesn’t display anything, but you must call it first before you call the macros that display the text.

<$morememo>

This is a boolean macro that returns true while there are more lines of memo text to display.

<$memoline>

This macro returns the next line of text from the memo field that was opened with <$begmemotext>. A “line” is defined as a sequence of printable characters that ends with a carriage return and linefeed character. However, you can also define the maximum length in characters that you want <$memoline> to return by specifying that number as a parameter (for example, <$memoline 80>). Whenever possible, SpinDB ends the line on a blank space, so you don’t end up with lines that are truncated in the middle of a word.

<$endmemotext>

Call this macro when you are done with a memo field. It is important that you use <$endmemotext> so that SpinDB knows you are done with the memo field and can remove it from memory. Only one memo field can be activated at a time.

To display an entire memo field, you would use a loop like this:

	<$begmemotext comments>�	<$while $morememo>�	 <$memoline>
�	<$end>�	<$endmemotext>

Working With Linked Tables

When a table has relational links to other tables, you can access fields from any of the linked tables. In a one-to-one relationship (where a record in the main table is related to exactly one record in the linked table), selecting the record from the main table automatically selects the proper record in the linked table. You can specify a field from the link table by using the link name associated with that table in a <$field> macro. For example:

	<$field invoices.date>

In this example, we reference the field DATE from the link INVOICES. Remember to use the link name rather than the table name (recall that a link name can be distinct from the name of the table it encompasses).

If you want to insert a number of fields from a linked table, you can use <$select> to select that link as the “main” link. Then, you can access fields in the linked table without the link name. For example:

	<$select invoices>�	<$field date>

This has the same effect as <$field invoices.date>, except that additional fields from the invoices link can now be inserted without repeating the link name in each field macro. Be sure to reselect your main link after you are done processing fields from the secondary link.

In a table with a one-to-many relationship, you can cycle through the records in a detail link with a <$while $found> loop, just like you do with the main link. To do that, you must <$select> the link first. Then, use <$while $found> and <$nextrec> to loop through the details. It’s OK to nest a <$while> loop for a detail field inside your main loop; just be sure to reselect your main link after the inner loop is complete.

Filters and Forms

Earlier, we talked about using a filter to limit the scope of records returned by a query. Filters are expressions that tell the database engine to include or exclude records based on certain criteria. Filters are associated with a view; to use a filter, use the Database Manager program, select a view, press the Filter button, and type your filter in the space provided.

A simple filter limits the table to instances where a field contains a certain value. For example, to limit a view to all records which contain the letters NY in the STATE field, type:

	STATE = ’NY’

Notice the single-quote marks surrounding the letters ‘NY’. Single quotes are required whenever you type a literal string into a filter. If your database contains numeric fields, you don’t need to put quotes around numbers. For example, a field containing a numeric field called COST could be used this way in a filter:

	COST = 25

With numeric fields, you can also use the operations less than (<), greater than (>), less than or equal (<=) or greater than or equal (>=). For example:

	COST >= 100

If you want to use date fields in a filter, use the curly braces – { and } – to express a date constant:

	DATE = {6/20/96}

Date constants are always expressed in M/D/Y format within a filter (although you can display dates in any format you want using the <$fdate> macro).

Filters are not limited to a single expression. You can create complex filters by relating multiple expressions with the and and or operators. The “and” operator is two amperstands (&&); “or” is expressed as two pipe characters (||). For example:

	COST=25 && STATE=’NY’

This filter limits the range of records to cases where the COST field equals 25 and the STATE field equals ‘NY’. More complex expressions can be created by grouping sections with parenthesis; for example:

	(COST=25 || DATE={6/20/96}) && STATE=’NY’

To pass this filter, a record must contain ‘NY’ in the STATE field, and either 25 in the COST field or 6/20/96 in the DATE field.

Using Filters with Forms

Filters like the ones shown above (which compare fields with constant values) are useful, but often you want a user to be able to select the criteria for a particular search. Let’s say you have a used car database with a number of vehicles, each with a different model year and price. When you put such a database online, you’d want users to be able to select their own price and year range for the filter, rather than limit the searches to constant values.

SpinDB lets you do just that with forms. There are two steps involved in the process. First, you have to actually create an HTML document containing a form that requests from a user the particulars of the search you want to perform. The form’s action is the $SPINDB.QUERY command. It doesn’t matter what you name the fields in your form – they can be the same as the field names in your database, or they can be different.

Next, you have to modify your filter expression slightly to take into account information provided on the form. SpinDB recognizes form names by enclosing the name in square brackets within an expression. In other words, a token such as [PRICE] means “substitute whatever the user typed into the PRICE field on my form”. To use it in a filter, you’d type something like this:

	COST = [PRICE]

Remember that string data must always be enclosed in single-quotes. So, if you have a field in your form that’s going to contain string data instead of a number, use a filter like this:

	STATE = ‘[MYSTATE]’

Notice that the term STATE in this filter refers to a field in the table, whereas [MYSTATE] refers to a field on the HTML form. It’s important to keep that distinction clear, because the term “field” is used to mean both types of fields.

Here is an example showing the use of a form to filter a database. Let’s assume we want to construct a query based on the PRICE field in a form, and we want our user to be able to specify a price range (a minimum and maximum price). For this example, assume that the view name is ITEMS and the template name is LIST.HTM.

First, we design a Web page containing this form:

	<form method=POST action=/$spindb.query.list.items>��	 Minimum Price: <input name=MINPRICE>
�	 Maximum Price: <input name=MAXPRICE>
��	 <input type=SUBMIT value=”Display Matching Records”>�	</form>

Next, we write this filter expression for the items query:

	(PRICE >= [MINPRICE]) && (PRICE <= [MAXPRICE])

See our example database and templates for more information.

Accessing Form Data withing a Template

Occasionally, you may want to use the information entered into a form directly. During any query that involves a form, you can access the raw form data using these macros:

<$formdata>

Returns the data from a named field in the form; the field name is the parameter. For example, <$formdata Firstname>.

<$beginform>�<$moreform>�<$incform>�<$formfield>

These macros let you construct a loop that returns the name of every field on the form. You can use these macros when you want to “dump” all the data from a form onto the web page (or embed that data as hidden fields in a new form). Here is an example:

<$beginform>�<$while $moreform>�The field name is: <$formfield>
�The field contents: <$formdata <$formfield>>
�<$incform>�<$end>

Adding and Editing Records

You can use SpinDB to add records to a table or modify existing records by replacing data in one or more fields. Unlike a query, adding and modifying records always involves a form (an HTML document containing user input). To add a simple record to a table, you could use a form like this one:

	<form method=POST action=/$spindb.add.list.customers>��	 My first name is: <input name=FIRSTNAME>
�	 My last name is:: <input name=LASTNAME>
��	 <input type=SUBMIT value=”Create the Record”>�	</form>

The action clause of the Form tag is where most of the important action happens. The URL $spindb.add tells SpinDB that we are interested in adding a record. The next parameter, list, is a template name, and the final parameter, customers, is a view name. The view name must be of type “Add”. The record is added to the table associated with the view’s main link.

The remainder of the form contains fields where the user can enter information to be added to the new record. The format is simple: the name of each field in the form must exactly correspond to the name of a field in the table to which the record is being added. In this case, we assume that the table contains at least two fields named FIRSTNAME and LASTNAME; the new record will contain whatever data the user enters into the form for these fields.

If a form contains fields which are not in the table, SpinDB ignores those fields, but does not generate an error. If the table contains fields which are not in the form, SpinDB fills those fields in with either blanks or with the default values that are associated with those fields (some database types, such as Paradox, allow the table designer to supply default values).

SpinDB lets you post information to most field types, including date, time, number, logical and memo fields. For date fields, the input can be expressed either in MM/DD/YY format, or as a Julian date. Time fields should be supplied in HH:MM or HH:MM:SS format. Numbers are specified as a string of digits. For logical fields, the characters “Y”, “T” or “1” evaluate to True; anything else means False. For memo fields, supply the input with a TEXTAREA type of field on your form. SpinDB allows you to post virtually unlimited size memo fields.

You aren’t limited to simple text entry fields when designing your forms. SpinDB can accept input from any HTML input type, including radio buttons, checkboxes and picklists. To supply default values for fields, create input tags using the hidden attribute (for example: <input name=COUNTRY value=”Canada” type=hidden>).

If SpinDB succeeds in adding the record, it immediately performs a query on that record in the database, using the supplied template name to generate the output. Thus, when posting a new record to a database, your result form will have access to all of the fields in that record. If SpinDB cannot create the new record, it returns a standard error form with the reason for the problem. One common reason you might be unable to add a record is if the record contains data that violates a unique key requirement of your database, or if the data fails to meet bounds checks imposed by the underlying database type.

System Maintained Fields

Whenever SpinDB adds or updates a record in a table, it checkes to see if the table contains any field names that start with the letters “SPINDB_”. Any fields that are so named are considered to be system-maintained fields, and SpinDB does not allow these fields to be filled with data from an input form.

The following reserved field names are automatically filled in by SpinDB. To use any of these fields, you must add them to your table using your database program.

SPINDB_OWNER_NAME: During an Add operation, SpinDB fills this field with the name of the user who is adding the record. (The user must be logged in as a Spinnaker user). If the record is being added by an anonymous user, then this field is left blank. Allow up to 30 characters when creating this field.

SPINDB_OWNER_IP: Filled in with the IP address of the person adding the record. This field is only filled in when adding a record, not when updating a record. The IP address is expressed as a string (i.e. “207.54.137.11”). This field should be at least 16 characters long.

SPINDB_DATE_CREATED: Filled in during an Add operation with the current date. This should be a date-type field.

SPINDB_TIME_CREATED: Filled in during an Add operation with the current time. This should be a time-type field.

SPINDB_DATE_UPDATED: Filled with the current date during an Add or Edit operation.

SPINDB_TIME_UPDATED: Filled in with the current time during an Add or Edit operation.

Editing Existing Records

The process of editing an existing record in a table is much like the process of adding a record. You start with a form using the names of the fields in your database. Your URL uses the keyword edit instead of add, and the view you use must be an edit view. For example:

	<form method=POST action=/$spindb.edit.list.custedit>

Note that since the view type must be Edit, you cannot use the same view to edit records as you used to add them. You need to define a separate view using the Database Manager application.

The main difference between editing and adding a record is that when editing a record, you must tell SpinDB which record you want to edit. You accomplish this by inserting a hidden field in your form with the field name SPINDB_KEY, and a value that is equal to the key for the record you want to modify. Here is an example:

	<input name=SPINDB_KEY value=”F275220” type=hidden>

This field lets SpinDB know that you are trying to edit a record that has the key field “F275220”. If no record with this key field is found, then the command fails (the key must match exactly).

A key field is relative to whatever index is associated with the view. If that index is an aggregate of multiple fields, you specify the needed key fields by separating the data with commas. For an index that is made up of the fields LASTNAME and FIRSTNAME, the key might look like this:

	<input name=SPINDB_KEY value=”SMITH, WILLIAM” type=hidden>

When updating records, it is important that the key you use is unique, so that you select only one possible record in the table. It is up to you to ensure that the key field you use is unique. Some types of databases support the enforcement of unique keys; if possible, use an index that is guaranteed to be unique when editing records.

When editing a record, it is permissible to change any of the fields in the record (even key fields).

Keep in mind that any fields you place on a form are copied to the record when you update it; if you leave a field blank, the corresponding field in the record is set to blank. Typically, you want to edit some information in a record but leave most fields at their existing values. One of the best ways to do this is to build your input form using a query. That is, query the record using a $spindb.query command, and create the form for the edit command in the query’s template. Then you can fill in the fields with the existing data as default values; for example:

	<input name=FIRSTNAME value=”<$field FIRSTNAME>”>�	<input name=LASTNAME value=”<$field LASTNAME>”>

When a form is built this way, you can both view the contents of the record and make changes simply by editing those fields that require a change and then submitting the form.

Security and Record Ownership

Your Web site might contain tables to which you don’t want users to be able to add or modify records, or tables to which only a certain group of users is able to perform additions. SpinDB’s Database Manager program enforces security on Add and Update views, just as it does on Queries. In other words, if the security parameters you define for your Add or Update view are not met, then SpinDB abandons the request and returns an authorization failure.

You can use the system-maintained SPINDB_OWNER_NAME and/or SPINDB_OWNER_IP fields to allow someone who originally created a record to edit that record, without giving that person permission to edit other records in the same table. To do this, make sure the SPINDB_OWNER_NAME and SPINDB_OWNER_IP fields are present in your table. Next, define an Edit view, leaving the “Enforce Security” flag checked, and additionally, check the “Allow Owner to Modify” flag.

When an edit view is configured this way, SpinDB checks to see if the value in the SPINDB_OWNER_NAME field matches the name of the user who is making the request. If so, SpinDB allows the edit to take place, even if the user does not meet the other security requirements for that view. If not, it abandons the edit.

This type of security requires that the person who added and is updating the record has created an account on your Web site and is logged in. However, if the SPINDB_OWNER_NAME field is either blank or not present, then SpinDB checks the SPINDB_OWNER_IP field for a match with the IP address of the Web browser making the request. If the IP address matches, then SpinDB treats the request as coming from the record’s owner.

Ownership based on IP address is less secure than ownership based on user name, because IP addresses are often shared. But, IP based ownership does allow you to work with anonymous users. It is suggested that IP based ownership be used only when you are updating a record during the same session that the record is added. If you don’t want IP based ownership for a particular table, you should ensure that only logged-in Spinnaker customers can add records; you can do this by restricting the Add view for that table. If the SPINDB_OWNER_NAME is not blank, then the SPINDB_OWNER_IP field is always ignored. You can also disable IP ownership simply by omitting the SPINDB_OWNER_IP field from your table.

Query Caching

A cache is an allotment of memory or disk space that serves to store frequently needed information. Most people are familiar with the term cache as it applies to a Web browser; browsers typically cache Web pages and images to save time when reloading a page.

SpinDB implements a cache mechanism that allows you to save the results of a query command so that multiple requests for the same query can be satisfied quickly. When dealing with large databases, it is possible to create queries that take a significant amount of time to execute, especially if complex filters or large iterative loops are involved. When a single SpinDB query takes more than a few seconds to produce the resulting Web page, you can often benefit by caching that page. When a page is cached, SpinDB stores the page on disk (it is actually saved in a database called SDCACHE) and, when a request is received for the exact same query, it satisfies the request by retrieving the page image from its cache rather than by recomputing the entire page.

Caching is enabled by placing a <$cache> macro in the template that is used to generate the page. The <$cache> macro takes two parameters: the first is a number, and the second is the word seconds, minutes, hours, days or hits. Here are some examples:

	<$cache 2 hours>�	<$cache 1 day>�	<$cache 300 hits>

The parameter tells SpinDB how long to cache the query. Since cached queries are not updated when the database changes, it is important to set a limit to how long a cached query is active. The limit can be set in terms of time or in terms of hits (the number of times the query is requested). When a cached query expires, SpinDB deletes it from the cache; the next time that query is requested, it computes a new page (and caches the new page, if its template contains a <$cache> macro).

SpinDB will only use a cached query if you request it with the syntax $spindb.!query.template.viewname. The addition of the exclamation point before the word query tells SpinDB, “you may satisfy this query from the cache, if a cached result is available”. Without the exclamation point, SpinDB will always compute the query using the live database rather than the cached data, even if cached data is available.

Caching is extremely useful whenever you execute complex queries over a large and relatively static database. For example, a database of 40,000 customers is not likely to change dramatically over the course of one day; thus, a query that displays the number of female customers who live in Utah is likely to be just as valuable whether it is immediately computed or satisfied with a page that was computed several hours ago.

Generally speaking, you should cache queries that involve a large number of records or which take a long time to compute. Select a cache period which is appropriate for the page, depending on how often you expect the data to change, and how critical it is that the results of a query reflect database changes immediately. Simple queries that just involve one record are likely to be just as fast whether you cache them or compute them every time.

You can cache queries whether they originate from a URL or a form. When you cache a query that includes a form, the cached image is only reused if another request is received with exactly the same form data. For forms with a small number of fields or fields that are selected with radio boxes or picklists, caching can be effective. On forms with a large number of fields or forms with large freeform entry fields, caching still works, but is of limited value since it is less likely that another query will occur with precisely the same form data.

When dealing with cached queries, keep in mind that a change to the underlying database may not be immediately reflected in your Web site. You can always refresh your cached data manually simply by removing the exclamation point from your SpinDB command. Cached data is also sensitive to changes in your template file; if you modify a template file, then any cached queries that involve that template are immediately invalidated (this behavior means that changes to your templates will be reflected immediately).

Cars Example Database

We’ve included a simple database called CARS with your SpinDB product. CARS.DB and CARLIST.HTM (the database file and template) are located in your spindb subdirectory.

To use it, run the SDBMAN program and open the view CARVIEW. Select the security tab, and un-check the “Enforce Security” box. While you are here, take a look at the view’s other properties and make sure you understand what each field means.

Next, locate the file CARSRCH.HTM in your Spindb subdirectory and move it to your Spinnaker document home directory or another directory on your system that contains HTML files. Request the file from a Web browser, fill in the form, and press the submit button.

��

� TC "Spinnaker Application Program Interface" \l 1 �� XE "CGI" � � XE "CGI-DLL" �Spinnaker publishes a robust Application Program Interface (API� XE "API" �) that allows third-party developers to write programs that take advantage of Spinnaker services like Dynamic HTML with a minimal amount of work. Central to the API is CGI-DLL, Spinnaker’s method of running CGI applications from dynamic link libraries rather than executable files. CGI-DLL allows Spinnaker to run complex application programs (including conferencing and databasing) as if those applications were built into the server itself. Some of CGI-DLL’s advantages over traditional WinCGI� XE "WinCGI" � include:

CGI-DLL applications load and initialize once, instead of loading each time a URL is requested. Once loaded, CGI-DLL applications are activated via an efficient direct function call.

CGI-DLL applications share data with the Web server by pointer reference rather than through the cumbersome process of reading and writing text files.

You can create small “macro applications” that supply portions of existing documents rather than generate complete pages on their own.

Spinnaker’s standard CGI-DLL applications (like WebMsg, WebFile, and Profile) use the same API interface described in this document. When you create CGI-DLL applications, your applications are as efficient as those that are built-in to Spinnaker, and in fact become part of Spinnaker itself at runtime.

This document assumes you are familiar with Windows programming and that you can write Windows-based DLLs� XE "DLLs" � with C++� XE "C++" � or a similar high-level language. The supplied examples were developed using Borland C++ version 5.0. This document does not attempt to be a tutorial on the use of Windows compilers or the creation of dynamic link libraries� XE "dynamic link libraries" �; if you are unsure how to use your compiler to create DLLs, please consult an appropriate reference book.

Overview of the Spinnaker API� XE "Spinnaker API" �

You can use some or all of Spinnaker’s API interface, depending on your needs. The basic elements include:

Page Applications. The simplest CGI-DLL application accepts a URL from the Web server and creates an HTML document as its output. A simple CGI-DLL application requires just one entry point to function as a Page Application.

Forms Applications. If your application requires input from forms, you can add an additional set functions that receive form data from the server. Form data is transferred directly to your program in its raw format.

Dynamic HTML. If you want your application to use Dynamic HTML (which gives you the ability to use your own templates, macros and conditional statements) you can call Spinnaker’s Dynamic HTML processor directly from your program.

Macro Applications. If you want to create an application that simply supplies macros to other pages, you use a different type of DLL interface.

Miscellaneous Services. Many of Spinnaker’s internal services are available to your application through DLL function calls. We’ll cover the most valuable ones here.

Databases. Spinnaker uses the Borland Database Engine (BDE) to manage its internal databases, including the user profiles and security settings for all applications. We’ll cover the standard database formats and show how you can read existing data and write your own records.

Basic Development Concepts

Non-Modal Programming

When you create a CGI-DLL application, you are writing a function that’s designed to receive a request (either a URL from a Web browser or a URL plus a stream of form data), generate an HTML file based on that request, and return a result code.

Each time your program is invoked, it could be asked to process any request from any Spinnaker user. In other words, there is no guarantee that your program will receive requests in any particular order, nor is there a guarantee that you will receive sequential requests from the same user. A successful Spinnaker application must be a non-modal program. By “non-modal”, we mean simply that you should be prepared to handle any request that your program supports at any time, and you should not depend on the results of a request once that request has been satisfied.

Each time Spinnaker calls your program, you receive a pointer to a record that tells you the name of the current user (if a user is logged in) and the IP address of the browser making the request, along with the complete URL and form data, if applicable. Although it is possible to use this information to store results of a request and associate those results with future requests, this is discouraged unless it is absolutely necessary. Instead of storing results internally in your program, consider encoding data in the URL itself or in forms. As an example, our Webversi� XE "Webversi" � application encodes the entire board position, skill level and graphic choices for each game in the URL. This allows users to save partially completed Webversi games as bookmarks and return to them hours or days later, even if we have rebooted our server in the meantime.

If you do have the need to keep track of previous requests, try to do so by the user name, rather than by the IP address. There is no guarantee that a user will always use the same IP address or that multiple users will not share an IP address, but Spinnaker ensures that usernames are unique. If your program creates databases, we highly recommend you use the Borland Database Engine, upon which all of Spinnaker’s own data is based.

Win32

The current version of Spinnaker is a 32-bit Windows application; the DLLs you create must be 32-bit Windows DLLs that use the Win32 conventions for pointers and integers. Spinnaker cannot load 16-bit DLLs. If you have older 16-bit DLLs written for earlier versions of Spinnaker, you need to recompile your programs in the 32-bit model.

Multithreading

Spinnaker is a multithreaded application; it can process many requests for HTML documents simultaneously. In order to create Spinnaker applications that are both reliable and robust, you must follow several basic programming rules.

First, your programs must be reentrant. That is, you must be prepared for the possibility that Spinnaker will call your program and then call it again before the first function call has terminated. The basic rule of reentrancy is to avoid using static global resources; use local storage whenever possible. If you do use global variables, you must have a system to manage these resources so that only one thread is modifying a global variable at a given time. Windows 95 and Windows NT use preemptive multitasking, which means that they can interrupt and possibly reenter your program arbitrarily. If you use global resources, you need to protect them with semaphores.

Try to avoid using excessive stack space. Windows limits the stack to approximately 1 megabyte. If you need a large local variable, declare a pointer to that variable and allocate the actual storage on the heap (don’t forget to free the heap variable before your procedure ends). Heap space is limited only by the amount of RAM in your machine, so it is not generally a problem. If you exhaust the stack space, Spinnaker or your application can crash with unexpected results and little or no warning, so be very careful. Enable stack checking while debugging your program, if your compiler supports it.

Needless to say, if you write an application that overwrites unallocated memory, goes into an infinite loop, or otherwise corrupts the operating system, you put your entire Web site (and the sites of anyone using your program) at risk. Be very careful to test and debug your application thoroughly before running it on a critical Web site or distributing it to others.

Conventions

All parts of the Spinnaker API use null-terminated strings and 32-bit signed integers. A blank string is always represented by a pointer to a null character, rather than as a NULL pointer itself. For functions that require your program to supply string output, make sure your string ends in a null character.

We use the pass by reference (&var) syntax frequently in our function prototypes. This is functionally equivalent to *var (pass by pointer) except in the way the variable is treated syntactically. No part of the Spinnaker API uses pass-by-value for any value or structure except integer values and pointers.

Spinnaker applications should return date values as a string of numbers representing the Julian date, and time values as the number of seconds past midnight. This convention is used by other Spinnaker applications; you can format these values with the <$sys.fdate> and <$sys.ftime> macros to produce human-readable output in your documents.

Avoid placing a lot of literal text strings inside your programs. Instead, use templates to generate your output. By avoiding internal strings and messages, you make your program portable to other languages and better able to cope with future changes in the HTML language and browser technologies. (You can call our Dynamic HTML engine to automatically process templates for you).

Using the Example Programs

Example programs are provided to illustrate the major Spinnaker API concepts (you can find the examples in the SPINAPI subdirectory). All of the examples were developed with Borland C++� XE "Borland C++" � 5.0 and include the Borland project files (*.IDE files). The examples are set up to reside in a subdirectory off of your Borland C++ directory (i.e. \BC5\SPINAPI). If you install the examples in such a directory, you should be able to open the project files and compile these programs with the standard Borland compiler and runtime libraries. If you install in a different directory, you need to modify the search paths in Options/Project in order to reference the right directories on your system. To create new projects, we recommend you copy the example project files so as to retain the optimum compiler settings we have provided.

If you use a compiler other than Borland C++, you may need to adapt the examples to your compiler’s conventions. Most of the code is generic; however, compiler settings and the conventions for declaring external functions in a DLL may be different for your compiler. Make sure you understand how your compiler creates DLL files before you proceed.

You can use any language to create Spinnaker applications. If you use a language other than C++, you will need to develop your own code or translate the examples to the target language. Make sure your compiler is capable of producing 32-bit Windows DLL libraries and can deal with standard Windows data types (like null-terminated strings and 32-bit integers). Because CGI-DLL applications typically do not produce any local display, it is not necessary to link extensive GUI libraries in with your application; try to disable your compiler’s graphical interface features as much as possible in order to produce more compact DLL files.

Each Spinnaker application’s main DLL file must reside in the Spinnaker working directory (the directory containing SPIN.EXE). This is always the default directory when Spinnaker runs your application, so you can use directories relative to the working directory if you want to better organize your program’s resources or templates (for example, our conference program, WebMsg, uses a WEBMSG directory relative to the Spinnaker working directory).

Page Applications� XE "Page Applications" �

The simplest CGI-DLL program is a dynamic link library containing a single procedure called MAKEPAGE� XE "MAKEPAGE" �. The function prototype for MAKEPAGE is as follows:

extern "C" int __pascal _export MAKEPAGE (ServerData� &server, char* command, char* outfile);

You may need to modify this declaration if you use a compiler other than Borland C++. In Borland C, we use extern “C” to keep the compiler from changing the function name to a C++ name; _export declares the function exportable (so that it can be called from outside the DLL); and __pascal declares that the function will use the Pascal calling convention (fixed number of parameters, function cleans up the stack). Most of these constructs are standard when creating DLLs. For more information, consult your compiler reference.

Note that all string parameters are expressed as pointers to null-terminated strings (the C and C++ conventions for string representation). Note also that all non-integer parameters are passed as pointers to a data structure; none of the Spinnaker API functions pass records or large structures by value. (In many cases we use the C++ &var syntax to indicate an implicit pointer reference; these can be converted to ordinary pointers if you prefer).

MAKEPAGE takes three parameters and returns an integer. The first parameter, Server, is a pointer to a structure that is defined as follows:

struct ServerData {� int version; // Spinnaker version number� int status; // Zero indicates connection is still open� int socketnum; // Socket number for this connection� unsigned char ipaddr[4];� // IP address making this request� int portnum; // Port number (usually 80)� char* tempdir; // Location of Spinnaker’s temp directory� int cid; // Spinnaker’s internal process ID � char* username; // Logged-in user’s name� char* password; // Logged-in user’s password� char* submitname; // Submitted name�};

We’ll cover all of the fields in this structure in more detail in a moment.

The second parameter to MAKEPAGE is the command or URL that was sent to Spinnaker. This command always begins with a dollar-sign followed by the name of the DLL itself. If your DLL has multiple commands and arguments, you can parse the rest of the command line to figure out what you need to do. For example, the WebMsg application receives commands like $webmsg.read.general.10. You are not required to use periods as your separator; you can use any convention you wish. If your program only does one thing (or if it depends on data from a form) you may not need a command-line at all.

The third parameter to MAKEPAGE is a pointer to a temporary filename. You can use this pointer in one of two ways. If your application needs to create a new file for output, open this file and write your output to it. Your output is simply a text file. If your application needs to return an existing file (including a binary file of any type), you can copy the filename for that file into outfile. Be sure to copy the full path and filename. Outfile points to a buffer that can hold up to 255 characters. Note that Spinnaker does not check the directory of the output file against its security database. Thus, your application can allow downloading of files that are outside of Spinnaker’s secure directory tree (naturally, you will want to ensure that your application itself is secure).

Finally, MAKEPAGE returns an integer result. The result for MAKEPAGE is any standard HTTP result code, and is passed directly back to the Web browser. The most commonly used codes are:

200		// Function was successful�401		// Authorization failure�404		// File not found or bad request

You’ll usually return 200 if your function executed successfully, or 404 if a failure occurred (like a bad command). You can use 401 to indicate an authorization failure if your application uses security. You can also pass back any other return code that is defined in the HTTP protocol.

Hello, World

Here is the main body of an extremely simple Spinnaker application. This particular application does nothing more than output an HTML document containing the words “Hello, World”:

extern "C" int __pascal _export MAKEPAGE (ServerData� &server, char* command, char* outfile) {� ofstream out(outfile);� out << “Hello, World\n”;� return 200;�}

Naturally, for this to compile, you must include the appropriate header files in your source code, the structure definition for ServerData, and a DllEntryPoint procedure (required for any DLL). For the complete program, see the included HELLO.CPP source file.

In this example, we didn’t even examine the command line because our program only does one thing. If we wanted to create a program that could accept different commands, we could parse the command line and use the information it contains to generate different outputs.

Some Simple Applications

Before you continue, load the Hello, World program (HELLO.CPP) into your compiler and confirm that you can compile it into a working Spinnaker application. To test the application, make sure HELLO.DLL is in your Spinnaker working directory, then load Spinnaker and make a request for “$HELLO”.

Once you have it working, shut down Spinnaker and try making some changes to the MAKEPAGE procedure. Here are several examples that illustrate the functionality we’ve covered so far:

extern "C" int __pascal _export MAKEPAGE (ServerData� &server, char* command, char* outfile) {� ofstream out(outfile);� out << “The command was “ << command << “
\n”;� if (*server.username)� out << “You are logged in as “ << server.username� << “
\n”; else� out << “You are not logged in.
\n”;� return 200;�}

In this example, we output the command which we received (which might be something like $hello.command) and the name of the logged-in user, if someone is logged in. Spinnaker’s ServerData record only contains a username if the person making the request has logged in with a valid name and password; otherwise, it sets the server.username field to a blank string.

Here’s an alternative version: let’s say that ours is a secure program and we want to force the user to enter a valid username and password before our program will work. We can do that by checking the server.username field, and, if it is blank, returning a 401 result. Here is the code:

extern "C" int __pascal _export MAKEPAGE (ServerData� &server, char* command, char* outfile) {� ofstream out(outfile);� if (*server.username) {� out << “You are logged in as “ << server.username� << “
\n”;� return 200;� } else return 401;�}

If a guest user tried to run this program, their browser would prompt them for a name and password (that is the result of the 401 return code). Once a proper name and password was supplied, the program would run and output the message.

ServerData Data Structure� XE "ServerData Data Structure" �

Every CGI-DLL function call receives a pointer to a ServerData data structure. ServerData contains information about the current user or system making the request. The fields in ServerData are as follows:

int version; // Spinnaker version number

This is a four-byte API version number. The current version number is 1. In the future, we will change the version number when there are additions or changes to the API interface. (Note that this number tells you the API revision, not the version of Spinnaker that is running. Different versions of Spinnaker may have the same API version).

int status; // Zero indicates connection is still open

This value is set to zero by Spinnaker when your program is called. If your program takes a long time to execute (for example, if it is performing a long sequential search), you can query this value from time to time to see if the connection is still open. If the connection closes for some reason (for example, if the user presses their browser’s STOP button), Spinnaker sets this value to 1. Your program can detect this and abort its processing.

int socketnum; // Socket for this connection�unsigned char ipaddr[4]; // IP address making this request�int portnum; // Port number (usually 80)

These values tell you the local socket and port number of the current connection, plus the IP Address of the browser making the request. (The IP Address is stored as an array of four one-byte numbers).

char* tempdir;� // Location of Spinnaker’s temp directory

A pointer to a null-terminated string representing Spinnaker’s temporary directory. If your application needs to create temporary files, it might use this directory.

int cid;� // Spinnaker’s internal process ID for this thread

Each HTTP request is assigned an internal “process id” number by Spinnaker. You need this process id if you want to use callback functions and other parts of the Spinnaker API, so as to let Spinnaker know which process you are dealing with. A process id number is always unique among active processes, but once an active process ends, its number can be reused for another process.

char* username; // Logged-in user’s name�char* password; // Logged-in user’s password�char* submitname; // Submitted name

If there is a current Spinnaker user, these values point to null-terminated strings containing the user’s login name and password. The username and password values are filled in only if a valid username and password is typed by the user; the submitname field is filled with what the user typed regardless of whether their password is valid. In general, your application� XE "application" � need only be concerned with the username field – you can be sure that the password is valid if the username field is nonblank. (The password and submitname fields are primarily used by our PROFILE.DLL application for creating new accounts).

int nothread; // 0 means process can launch threads

When this variable is zero, it means that your program can optionally launch its own background threads to complete complex tasks. When this variable is 1, your program should compute its results directly without using threads. This is set to zero for most normal requests; Spinnaker sets it to 1 primarily when a DLL is called in conjunction with the <$RUN> command.

int nodhtml; // 1 means server skips 2nd dhtml pass

Spinnaker ordinarily performs a Dynamic HTML pass on the HTML documents your program returns (so that it can process conditionals and macros). If you know that the document you’re returning doesn’t require this pass, you can set the nodhtml flag to 1. This saves time, because Spinnaker doesn’t have to scan the document for macros.

If you use the Dynamic HTML processor within your application (by calling the MAKEPAGE function, as outlined below) then this variable is automatically set for you if the Dynamic HTML processor determines that a second DHTML pass isn’t required.

Forms Applications� XE "Forms Applications" �

So far, we’ve looked at applications that take all their input in the form of a URL. Although you can fit a lot of information into a URL, some applications require much more information than is practical to send this way. The designers of HTML invented forms to meet the needs of such applications. Web pages that contain forms allow users to enter all kinds of information, from simple yes/no choices to picklists, string responses and even large blocks of freeform text.

Web browsers send forms as a continuous stream of data. In traditional CGI and WinCGI� XE "WinCGI" �, the Web server saves all the form data to a file and then calls the CGI application with the name of the file as a parameter. CGI-DLL� XE "CGI-DLL" � makes this process more efficient by giving your application direct access to the incoming data stream, without the need for an intermediate file. Thus, your application can retrieve form data directly from memory without the overhead of reading a file.

Receiving Form Data

If you want your application to process forms, your DLL needs three entry points in addition to MAKEPAGE. The prototypes for these functions are:

extern "C" int __pascal _export POSTBEGIN (ServerData� &server, int cid, char* command, char* outfile);

extern "C" int __pascal _export POSTRESUME (ServerData� &server, int cid, char* data, long int count);��extern "C" int __pascal _export POSTEND (ServerData� &server, int cid, char* outfile);

Here’s how forms processing works in CGI-DLL: When Spinnaker first receives an HTTP request that includes a form, it makes a call to your application’s POSTBEGIN� XE "POSTBEGIN" � procedure. The call to POSTBEGIN includes the ServerData pointer, the process ID number, a pointer to the command line (or URL) associated with the form, and a pointer to the temporary filename. The ServerData, command, and outfile pointers work exactly like those described for MAKEPAGE.

There is no form data included in the POSTBEGIN function call. Your job in writing a POSTBEGIN procedure is to store the process ID number and command data in memory and make whatever preparations your program requires to receive data from a form. This could include allocating memory or opening files. Assuming all goes well, your POSTBEGIN procedure should return a result of 1. If any error occurs, you can return zero, which will abort processing of that form.

After POSTBEGIN returns, Spinnaker then calls POSTRESUME� XE "POSTRESUME" � one or more times depending on how much form data is available. Each call to POSTRESUME includes the ServerData structure pointer, the same process ID number that was passed to POSTBEGIN, a pointer to the incoming form data, and a long integer that tells you how many bytes of data are available. Your job is to read the count bytes of data from the data pointer and either store them in memory, write them to disk, or otherwise process them.

POSTRESUME might get called more than one time, especially if there is a lot of form data to send. Each call to POSTRESUME gives your program direct access to a variably-sized piece of the incoming data stream (the exact size of each piece depends on things like internet traffic and network protocol layers, so it’s impossible to predict how your data will arrive). There is no upper limit to the number of bytes in a form or the number of times Spinnaker can call POSTRESUME, although your application can simply ignore any excess data beyond its own upper limit if it chooses to do so. POSTRESUME should always return a 1.

Finally, when all the data has been processed, Spinnaker calls POSTEND� XE "POSTEND" �, again passing the ServerData structure, the process ID number, and the output file pointer. At this point, your application’s job is to create an HTML file (presumably, one that is based on the data received from the form). POSTEND behaves much like MAKEPAGE: it can either write data to the file pointed to by outfile or store the value of another filename there; it returns an HTML return code such as 200 (success), 404 (file not found) or 401 (permission denied). Your POSTEND procedure should also deallocate any resources that POSTBEGIN and POSTRESUME may have allocated to store the form data.

If your POSTBEGIN procedure returns a 1, Spinnaker guarantees that your POSTEND procedure will get called. However, there is no guarantee that it will call POSTRESUME, since a form can contain no data or the data might never arrive. Even if POSTRESUME is called, there is no guarantee that the entire form will be received (forms can get lost if internet connections fail, or of the sending Web browser aborts its transfer). Therefore, your application must be sensitive to the possibility of receiving partial form data or no form data, and should generate results accordingly. It is possible that POSTEND might get called several minutes after POSTBEGIN is called, since Spinnaker will normally wait about five minutes for data to arrive before it gives up (Spinnaker will continue processing other connections during this period). The reason Spinnaker always calls POSTEND, even if the connection is aborted, is to ensure that your application has the chance to deallocate any resources it may have allocated during the POSTBEGIN and POSTRESUME procedures.

If your POSTBEGIN procedure returns a zero, Spinnaker immediately aborts that connection and does not call POSTRESUME or POSTEND for that connection.

A single DLL can contain both a MAKEPAGE function and a POSTBEGIN-POSTRESUME-POSTEND function group, so it’s possible to have one application that contains both URL-based commands and forms-based commands.

Interpreting Form Data

Before you program can make use of the data from a form, you need to understand how the form data is structured. Spinnaker delivers the data stream to your program exactly as it is received from the internet, without any modification or interpretation. In almost all cases, you’ll receive data in the standard HTML 2.0 format, which defines form data as a continuous stream with the general format:

fieldname1=data&fieldname2=data&fieldname3=data...

The pattern “fieldname=data” continues until the end of the form (there is no end-of-form marker; instead, you know the length of the form based on the number of data bytes you’ve read). Notice that there are no carriage returns or linefeeds between one field and the next. The ampersand character (&) separates the end of one field’s data from the name of the next field (the field names correspond to the names of the fields you defined in the original HTML form).

Two encoding conventions are used within the data stream. First, blank spaces are transmitted as + signs. Second, any ASCII character beyond the letters A-Z and the digits is transmitted as a percent-sign followed by two hexadecimal digits. (Because of this convention, the ampersand and equals-sign characters can be part of the data stream without being misinterpreted as separators). Your program will probably need to translate the data stream before it uses it. Note that when you receive data via the POSTRESUME procedure, there is no guarantee that the segment of data you receive contains the complete contents of one field.

Our example program includes a parser that you can examine and adapt to your needs.

Managing Multiple Forms

Keep in mind that your Spinnaker application must be reentrant. That is, there is a possibility that two or more different users can be submitting a form to your application at the same time. You use the process ID number (cid) to keep each user’s data stream separate from the others.

It is not sufficient to write a forms application which simply allocates a global memory buffer when POSTBEGIN is called and uses that buffer at POSTEND. Instead, you must allocate a separate set of resources for each process ID value that your program receives. It is possible (and commonplace) to have a situation where successive calls to POSTBEGIN, POSTRESUME and POSTEND have different process ID values and thus refer to different users and different forms. Your application must keep track of each data stream separately and be prepared to deal with any active stream at any time.

Example Code

We have included a complete example program called FORMDUMP.CPP. This program includes code for allocating, interpreting, and disposing of forms data on a per-process ID basis. Although FORMDUMP is limited in the number and size of the fields it can store, it is useful for many applications and it provides a platform upon which you can develop the code for dealing with larger forms, if you need it.

Dynamic HTML� XE "Dynamic HTML" �

In the previous sections, you learned how to create an application that Spinnaker can link to at runtime. Once your application runs, it writes output to a text file after performing whatever processing is necessary to obtain the results. In the HELLO and FORMDUMP examples, our programs simply output literal text strings and data contained within the programs themselves.

Spinnaker’s application programs (like Profile, WebMsg, and WebFile) use templates to generate their output. Although it is not necessary that a Spinnaker application use templates, a sophisticated application will want to take advantage of the flexibility that templates offer. Because a template keeps literal messages and formatting out of your executable code, it allows the end user to completely customize the look of each page that your program creates.

It is possible to write your own code to process templates, but it’s not necessary. Instead, you can call Spinnaker’s Dynamic HTML engine directly from your program and have Spinnaker itself perform most of the work. When you use the Dynamic HTML engine, you can take full advantage of Dynamic HTML features in your application, including programmatic macros, conditional statements, loops, and defines.

To use Dynamic HTML, your program sets up a list containing the names of the macros (symbols) it supports, and a callback function� XE "callback function" � that evaluates your symbols. Once these two objects are created, you simply make one call to the Dynamic HTML engine, which does all the work of reading your template file and writing the result. When one of your reserved symbols appears in the template, Spinnaker calls your callback function to evaluate it. Thus, the main body of your program will likely reside within the callback function or as functions that are called from within it.

The Dynamic HTML engine processes conditional statements and loops for you; all you need to do is evaluate the macros in your symbol table. Applications that generate lists or tables can be written with the looping structure contained in the template itself, rather than in the program code, giving the end user a great deal of flexibility.

Using the Dynamic HTML Engine

Spinnaker’s Dynamic HTML engine, and the code for processing templates, is stored in a dynamic link library called WEBAPP.DLL� XE "WEBAPP.DLL" �. This library is in the Spinnaker working directory, so it is always available to your application programs. (Before you can use the Dynamic HTML engine, you need to know how to load a DLL and call functions within it. This is a topic that is beyond the scope of this manual; consult your compiler manual or a Windows programming reference for more information).

The first step to using Dynamic HTML is to decide on names for the macros that your program will evaluate. All template processing is driven my macros; a macro is simply a key word that your program recognizes and evaluates to a string of characters. Macros can be used to return literal data (like a name or a field from a database) or they can be used to evaluate true/false conditions. Within a template, macros are always contained in an HTML tag and prepended with a dollar-sign (like <$line> or <$name>).

A macro list is an array of elements of this structure:

struct TemplateData {� int token; // integer token for this item� char data[30]; // string data for item�};

There is no limit to the number of macros that can be in one macro table, but there is a limit of 30 characters for the macro name. A typical macro table might be defined as:

const tokencount = 4;�TemplateData tokens[tokencount] = {� { 1, "$TO" },� { 2, "$FROM" },� { 3, "$TEXT" },� { 4, "$MORE" } };

When choosing the names for your macros, try to avoid using names that clash with Dynamic HTML’s predefined keywords (like $if, $while, and $switch). It is generally not necessary to worry about using macro names that are the same as macros used by other applications, since the Dynamic HTML processor only uses one set of macros at a time (thus, you can use macros that are already in use by our WebMsg or WebFile applications without fear). Notice that the leading dollar-sign is required to be present within your macro table.

Next, you need to create a callback function. The prototype for your callback function is:

int __pascal _export� Callback (ServerData &server, int token, char* params,� void* locals, char* result);

This is the function that Spinnaker will call each time it encounters one of your tokens in the template file. Your job here is to evaluate the token and return a string of characters in result. We’ll talk more about this and cover the mechanics of this function in a moment.

Finally, you need to declare a variable of this type:

typedef int __pascal CallbackFunc (ServerData &server,� int token, char* params, void* locals, char* result);��struct TemplateType {� CallbackFunc* callback; // callback function� char formname[128]; // the input (template) file� int count; // caller's item count� TemplateData* data; // caller's item data� char includepath[128]; // include path�};

Once you have these structures in place, declare a local variable of type TemplateType and initialize it as follows: In the callback field, store a pointer to your callback function. In formname, supply the filename of your template file as a null-terminated string (this can be either a full path or a path that is relative to Spinnaker’s working directory). For count, store the number of macros in your macro table, and for TemplateData, supply a pointer to your macro table. Finally, you can store a pathname where Spinnaker should look for include files in includepath (this is optional; set this field to nulls if you want to use the default setting).

Once your TemplateType variable is set up, you are ready to start the Dynamic HTML engine. Do so by calling this function, which is contained within the WEBAPP.DLL file:

int __pascal MAKEFILE (ServerData &server, TemplateType*� temp, void* locals, char* outfile);

For ServerData, pass the same pointer that Spinnaker passed to your MAKEPAGE� XE "MAKEPAGE" � or POSTEND procedure. Temp is a pointer to your TemplateType structure. Outfile is the name of the output file (as with ServerData, you can simply pass the same pointer that you receive from Spinnaker). Locals is an arbitrary pointer that the Dynamic HTML engine does not use, but passes through to your callback function for your own use; we’ll cover this topic in a moment.

The MAKEFILE function returns a value of 1 if it ran successfully, zero if any error occurred (the most common errors are the inability to open the template file or the output file).

The Callback Function

Your callback function� XE "callback function" � is the key to integrating your application with the Dynamic HTML processor. When you call MAKEFILE, Spinnaker begins reading your template file and writing the output to your output file; when it encounters a macro contained within your macro table, it calls your callback function to evaluate it.

Within a template, you can use your macros anywhere that macros are legal within the Dynamic HTML scripting language. The simplest way to use a macro is to simply enclose it in an HTML tag, as in <$mymacro>; but you can also use your own macros with conditional statements like <$if>, <$while> and <$switch>. Check the main Spinnaker documentation for a complete explanation of the Dynamic HTML syntax, or review the default templates included with other Spinnaker applications.

Recall the prototype for your callback function:

int __pascal _export� Callback (ServerData &server, int token, char* params,� void* locals, char* result);

Here’s what each parameter represents, and what your function needs to accomplish:

Server is simply a pointer to the ServerData structure, as defined earlier. You can use this pointer to obtain information about the current connection, including the IP address and username. Server is a read-only structure.

Token is the integer value from your macro table representing the macro that you are being called upon to evaluate. This number corresponds to one of the integer numbers contained within your macro table. (It is not required that your macros be numbered sequentially from 1, but that is a common convention). Within your callback function, you might use a switch statement to branch to the part of your code that deals with the particular macro at hand.

Params is a pointer to a string containing any optional parameters for your macro. All macros can have parameters associated with them; within the template file, you simply type a space after the macro name and follow it with the desired parameter string (for example, <$mymacro parameters>. Params points to a null-terminated string containing only the parameter data (in this case, it would point to a string that says “parameters”). If a macro has no parameters, params points to a null string.

Locals is an optional pointer variable that you can use to point back to variables or data that you created before calling MAKEPAGE. We’ll talk more about this parameter in a moment.

Result is a string buffer into which you return your results. For macros that evaluate to a string of characters, simply copy that string into Result. In cases where you wish to perform a true/false evaluation, set Result to a null string to indicate false; set it to anything else to indicate true. (Be sure that Result is always terminated with a null character, regardless of anything else). A false result causes conditional statements like <$if> to skip the associated block of code, and causes loops created with a <$while> statement to end. One macro can serve both to return a string or a true/false result; a blank string simply means false.

Result points to a buffer that is about 4k in size. We recommend that you do not return values that are larger than 256 bytes unless you add your own carriage returns and linefeeds to the data stream. If you wish to return large amounts of data in your program, consider returning it a line at a time within a <$while> loop (the way WebMsg and WebFile return messages and file descriptions).

Finally, your Callback procedure should return a value of 1 to indicate that it completed successfully, or zero to indicate an error. (Spinnaker does not currently do anything different in the case of an error, but it may do so in future releases).

Using the Locals Pointer

Each call to your Callback function evaluates one token and returns a result. When you begin to write a callback procedure, you will immediately run into a problem: if you want to store information between successive callbacks, or even to use variables that your program created before you called MAKEFILE, you can’t, because your callback function doesn’t have access to those variables.

As a typical example, look at WebMsg. When you read a conference, the callback function needs to know what conference you are reading and what message number you’re on in order for it to evaluate macros like <$to> and <$from>. In the case of <$while> loops, the callback procedure needs to keep track of how many times the loop has executed so that it knows where to end the loop.

At first glance, you might consider solving this problem with global variables, but that’s a bad idea. Since Spinnaker can start your application� XE "application" � more than once, an application that uses global variables will fail if more than one thread is active at the same time, since the instances will overwrite each other’s data.

Instead, use the locals variable to pass a pointer to whatever data you need to keep track of between calls to your callback function. Unless your needs are very simple, you will probably want to make locals a pointer to a structure or an object that contains all of the data elements you need. Typically, you’ll declare a local structure or object within your MAKEPAGE or POSTEND procedure, and pass a pointer to that object to MAKEFILE (which in turn passes the same pointer to your callback function). If you prefer, change the definition of locals from void* to an appropriate pointer type for your object.

Our example program, DYNAMIC, illustrates all the steps needed to create an application that calls the Dynamic HTML engine, including local variable management. You can use the header files from this project as-is when you create your own applications.

Macro Applications� XE "Macro Applications" �

All of the applications we looked at so far have one thing in common: they are activated when a Web browser sends a URL that begins with the application’s name (i.e. http://www.mydomain.com/$dynamic) and they all generate a complete HTML document as their output.

Sometimes, instead of writing an application that returns a whole page of output on its own, you want to create individual macros that can be inserted into any document (even documents created by other applications). Spinnaker gives you a unique facility for doing this called Macro Applications. A Macro Application lets you add new symbols to the Dynamic HTML language that are globally available to all pages, regardless of whether the page is a simple HTML document read from disk or a page created by an application.

Spinnaker itself includes several Macro Applications; for example, SYS.DLL� XE "SYS.DLL" � is a macro application. When you want to reference the current time or date in a document or template, you include the macro <$sys.time> or <$sys.date>. Merely by its presence in the Spinnaker working directory, SYS.DLL makes these macros available to every Spinnaker document.

A Macro Application can have any number of macros associated with it. The syntax for calling a macro application within a document is always <$APPNAME.MACRO>, where APPNAME is the name of the Macro Application’s DLL file, and MACRO is the name of a macro defined by the application. Macros can have additional parameters; just add the parameters after the macro name with an intervening space.

Creating a Macro Application

Internally, a Macro Application is similar to an application that uses the Dynamic HTML “MAKEFILE” function call. Macro Applications have a macro table and a callback function that are identical to those in standard applications that use Dynamic HTML. (Please review the previous section for more information). The only difference is that the macros within the macro table of a Macro Application should not include the dollar-sign character.

Macro Applications do not have a MAKEPAGE (or POSTEND) procedure, since they are not activated by a URL. Instead, Macro Applications are activated by the Dynamic HTML engine when the engine encounters a macro of the type <$APPNAME.MACRO>. If APPNAME.DLL can be found in the Spinnaker working directory and it contains the proper entry point, it is called upon to evaluate the macro.

The main entry point for a Macro Application is this function:

extern "C" TemplateType* __pascal _export� GETTEMPLATE (void);

GETTEMPLATE� XE "GETTEMPLATE" � must return a pointer to a TemplateType object, which in turn must be initialized with pointers to a macro table and a callback function. The definition for TemplateType, as well as the callback function and macro table, are the same as those used with page applications. Spinnaker generally calls your GETTEMPLATE function only once, the first time it sees a request for your macro application within a template; from then on, it calls your callback function directly when there is a macro from your macro list to be evaluated. (As with any DLL, your Macro Application DLL also needs a LibMain and WEP procedure).

The locals parameter is always NULL during a call to the callback procedure in a Macro Application. If you need to store information between successive calls to your application, you will need to do so in global variables or databases of your own. Be sure that you account for the possibility that successive calls to your application may come from different documents. It is best to keep Macro Applications simple and avoid having the callback function depend on results generated during a previous call.

An example Macro Application is provided in the source file called MACAPP.CPP. Notice that the macros in the macro table do not begin with a dollar-sign.

How Spinnaker Manages Applications

Both Macro Applications and Page Applications are loaded once, the first time Spinnaker processes a request for the application. Spinnaker reads and stores the entry points for the application the first time it is loaded, and calls those entry points directly when there are subsequent requests. A list of loaded page applications appears in the “DLL” tab of Spinnaker’s working display. When Spinnaker shuts down, it unloads all the DLLs it loaded while operating. You can also manually unload a page application by right-clicking on it in the DLL display (you cannot unload Macro Applications this way).

If your application uses any DLLs of its own (for example, if it uses the WEBAPP DLL for Dynamic HTML processing), you should make sure that you unload the DLLs you use during your shutdown procedure (that is, your WEP procedure). Our example program for Dynamic HTML illustrates this. Of course, your program should also free up memory and any other resources it may be using at this time.

We recommend against creating a single DLL that is both a page application and a macro application. Since page applications that use Dynamic HTML can trigger Spinnaker to load macro applications, it is possible to create a situation where some applications do not get unloaded properly when Spinnaker shuts down. To avoid the problem, make page and macro applications separate DLL files.

Miscellaneous Services

The dynamic link library SERVINT.DLL� XE "SERVINT.DLL" � publishes a number of miscellaneous services that your applications can use to find out more about the state of Spinnaker itself or give Spinnaker special instructions for processing a request. Each of these functions uses the Spinnaker connection ID number (cid) as a parameter; get this value out of the ServerData structure that is passed to your program (i.e. server.cid).

The functions available to application programs include:

unsigned char KillSent (int cid);

If your program uses the output filename passed to it from Spinnaker, you don’t have to worry about cleaning up your output; Spinnaker deletes the temporary file after sending it. If you instead pass Spinnaker back a filename of your own, Spinnaker reads that file but does not attempt to delete it.

Sometimes, you need to create a temporary file that has a different name than the file passed to you by Spinnaker, but you still want Spinnaker to delete the file. To accomplish this, call KillSent anytime during your MAKEPAGE or POSTEND procedure, passing the connection ID value as the parameter (server.cid). Calling this function sets an internal flag that tells Spinnaker to delete your output file as soon as it is finished sending that file to the remote user.

The primary reason why you might need to do something like this is in cases where your application creates a temporary file that is not an HTML document (it could be an image, a sound file, a video clip, etc). Because the default temporary filename ends in .HTM, the mime type for your output will always be an HTML Document unless you change the output filename to something else.

int GetUserCnt (int cid);�unsigned char GetUserInfo (int cid, int num,� UserInfo &result);

This pair of functions lets your program query the names of currently logged-in users. The first function returns the number of logged-in users; the second retrieves information about one user. In GetUserInfo, num is a value between zero and GetUserCnt()-1.

Pass GetUserInfo a pointer to this return structure:

struct UserInfo {� char* Address;� char* Name;�};

Your program must allocate storage for the two pointer values before you call GetUserInfo. Allocate at least 26 characters for Name and at least 16 for Address. (Be sure to deallocate the space when your program is done with the structure). GetUserInfo gives you the username and IP address for one user. To find out more about a user, your program can look their profile up in the user database. See the next section for details.

GetUserInfo returns a record for every connection that Spinnaker is managing, even connections where there is no user logged in. Hence, some of the records you retrieve via GetUserInfo may have a blank username, indicating a guest or anonymous user. The Address field will always show a valid IP address. Your program should take this into consideration; you may want to ignore those connections without usernames.

unsigned char GetMethod (int cid, char* result);�unsigned char GetRequest (int cid, char* result);�unsigned char GetHTTPVersion (int cid, char* result);

These functions return the HTTP method, the actual request, and the HTTP version number supported by the remote browser. Each of these functions requires a pointer to a preallocated string buffer. You should allocate a buffer of at least 256 characters when calling these functions. Your buffer is filled with a null-terminated string containing the requested data (which is taken directly from the header information included with the request from the remote browser).

int GetHeaderCnt (int cid);�unsigned char GetHeaderLine (int cid, int num,� char* result);�unsigned char GetHeaderValue (int cid, char* header,� char* result);

These functions let you access all the header fields for the current request. (Header fields are text lines that are sent by the remote browser separate from the URL or form data). GetHeaderCnt tells you the number of header lines available; GetHeaderLine retrieves a specific header line into a buffer you provide (your buffer should be at least 256 characters in size). Note that the number passed to GetHeaderLine should be between zero and GetHeaderCnt()-1.

You can use GetHeaderValue to search for a header line by the value of the field name instead of by number. Call it with header pointing to a null-terminated string containing the field name you’re looking for. If the field exists, it is returned to you in result; if not, the function returns zero.

unsigned char GetHomeDir (char* result);

This function call retrieves the Spinnaker home directory name (the directory that serves as the root for HTML documents).

unsigned char ClearHeaderLines (int cid);�unsigned char AddHeaderLine (int cid, char* header);

These calls let you add your own headers to the outbound HTML file. (Headers are information that is sent back to the browser with the output, but headers are not part of the HTML document). If you need to add headers to your output, call ClearHeaderLines first to signal Spinnaker that you will be adding headers. Then, call AddHeaderLine as many times as you need. In each call to AddHeaderLine, header points to a null-terminated string containing the header information you want to include. (Adding headers is an advanced feature that is rarely needed. Please consult an HTML technical specification for information about how to create and use headers).

In our example files, SERVINT.H and SERVINT.CPP contain the headers and code you need to load SERVINT.DLL and access the functions within it. To use Servint functions, link SERVINT.CPP into your project and include SERVINT.H in your source files. You also need to call the initialization and cleanup procedures within your LibMain and WEP procedures. See SIDEMO.CPP for an example program using SERVINT functions.

Databases� XE "Databases" �

Spinnaker makes extensive use of the Borland Database Engine� XE "Borland Database Engine" � (BDE) to meet its database needs. The BDE is a powerful development tool that lets programs manipulate databases in Dbase and Paradox format, as well as any ODBC or SQL database.

A Spinnaker system always contains these Paradox-format databases, located in a directory called DATA:

Spinnaker user file (USERS.DB)

Field properties file (FIELDS.DB)

Group names file (GROUPS.DB)

Access rights file (ACCESS.DB)

We strongly recommend that you acquire Borland’s BDE tools if you want to use these databases in your application. The BDE is implemented as a set of dynamic link libraries, so it can be used with both Borland and non-Borland languages. In this document, we will discuss only the data contained within these standard database files; you will need to obtain the BDE tools or a compatible development resource in order to learn how to access the files from within your program.

Spinnaker’s message conference and file library applications use proprietary Searchlight BBS database formats instead of BDE formats, for reasons of compatibility with the older DOS-based Searchlight BBS products. At this time there are no Windows tools available for using these databases. The security settings for conferences and file libraries are accessible through the ACCESS database, however.

USERS.DB File� XE "USERS.DB File" �

Spinnaker’s User file contains user profile information for your registered users. The standard fields in USERS.DB are:

LOGINNAME (25 character string, all caps)�PASSTYPE (Number, always 1)�PASSHASH (Number, hashcode for password)�SECGROUPS (Blob field)

LOGINNAME is a unique 25-character name, and it also serves as the key field for the database. PASSTYPE is always 1 in the current implementation; it may change in future releases. PASSHASH is a 32-bit integer number which is a hashcode based on the user’s password. SECGROUPS is a blob field (memo field) containing a list of all the group names to which the user belongs (within the blob field, a null character is used to separate one group name from the next).

A Spinnaker user file can contain any number of additional user-defined fields. Currently, it is possible to create fields of type String, Date, Time, Number, and Boolean with Spinnaker. Your application can be written in such a way as to make use of custom fields, but should never depend on a custom field to be present or for fields to be arranged in any particular order. (Your application can depend on the four default fields shown above to be present, however).

FIELDS.DB File� XE "FIELDS.DB File" �

This file defines whether the custom fields in the USERS file can be modified by users themselves. The settings in this file correspond to the choice you make when you create a custom field in the Users and Groups utility. The fields are:

FIELD (40 character string, all caps)�ACCESS (1 character string)

The name in FIELD corresponds to one of the field names in the USERS file, and is also the key field. ACCESS is a single-character field with one of the following values:

“W” means the field is writable by the user at any time through the PROFILE.DLL application;

“I” means the field can be initialized when a new record is created, but not updated;

“X” means the user cannot modify this field via the PROFILE application.

GROUPS.DB File� XE "GROUPS.DB File" �

This file stores the names of the currently active security groups. When you create a new group via the Users and Groups application� XE "application" �, a new entry is made in this database; deleting a group deletes the database entry (but does not automatically remove that group name from the USERS file).

The fields in GROUPS.DB are simply:

GROUPNAME (20 character string, all-caps)�DISPLAY (20 character string, upper/lower)

GROUPNAME is a string used internally as the group name; DISPLAYNAME is an alternate string that Spinnaker uses when it displays that group name on the screen. Usually, the group name and the display name are the same except for case.

ACCESS.DB File� XE "ACCESS.DB File" �

The access database is a generic resource for storing security settings. It contains the security settings for HTML document directories as well as for conferences and file libraries. If you write an application that requires security, you can use this database for your security settings, too.

The fields in ACCESS.DB are:

MODULE (10 character string)�RESOURCE (50 character string)�ACTION (10 character string)�ENFORCE (1 character string)�GROUPS (blob field)�USERS (blob field)�IPACTION (1 character string)�IPADDR (blob field)

Together, MODULE, RESOURCE and ACTION form the key field for the access database, and they define what resource the security setting applies to. Typically, MODULE is the name of an application program, RESOURCE is the name of some resource within that application, and ACTION defines the action upon that resource for which security is being defined. For HTML directories, MODULE is equal to “SERVER”, RESOURCE is the directory name, and ACTION is “GET”. For conferences, MODULE is “WEBMSG”, RESOURCE is the conference name, and ACTION is either “READ” or “WRITE”. For file libraries, the module name is “WEBFILE”, the resource is the library name, and the action is “READ”.

The fields GROUPS and USERS define which security groups and/or which users have access to the named resource. These are blob fields (memo fields) that can contain any number of entries each; the group names or user names are separated with a null character.

IPACTION is a single character; “I” means ignore the IP address list, “A” means allow only those addresses listed; “D” means deny those addresses listed. IPADDR is a blob field containing the IP address list itself (wildcard characters are supported).

Each Spinnaker application that uses security looks up the security setting for the requested resource in this database. New applications can also use the database; as long as a new application stores its security settings with a module name that does not conflict with an existing module name, it will not interfere with any other application. You must read and interpret the security information yourself when your program receives a request for a secure resource (Spinnaker does not evaluate security for resources owned by an application).

�Index

� INDEX \e " · " \h "A" \c "2" ��4

401 error · 23

A

access types · 20

ACCESS.DB File · 143

accounts · 17

add new files · 105

Administrator · 70

afternoon macro · 40

alias names · 68

Aliases · 16

Allow Administrator · 98

Allow Anonymous · 68, 87

Anonymous messages · 68

Anonymous Name · 87

API · 119

application · 2, 10, 17, 128, 136, 142

Authorization Failed · 52

Auto Purge · 69

B

BACKTO field (WebMsg) · 87

BDE · 12

Bind Failed · 16

block · 32

boilerplate document · 30

Boolean · 19

Boolean field · 41, 54

Borland C++ · 122

Borland Database Engine · 12, 141

browser type · 45

C

C++ · 120

callback function · 132, 134

case statement · 32

CD ROM · 97

CD-ROM · 96

CGI · 111

CGI-DLL · 10, 27, 70, 128

color codes · 76

comment · 35

Common Log File · 15

Compress · 69

Conditional Statement · 28, 31

CONF.HTM · 70

Conference list command · 82

Conference Maintenance · 67

Conference Security · 69

conferences · 10

adding · 67

modifying · 68

ConfMan · 65, 67

Custom Field · 40

Custom Fields · 19, 53

custom install · 12

D

database · 11

Databases · 141

Date and Time Macros · 37

Date Field · 19, 41, 54

Decfield · 43

DEFAULT Account · 54

Defines · 28

Delete · 90

Delete Custom Field · 20

delete existing files · 105

Directory Aliases · 16

DLLs · 120

Document Security · 21

document tree · 15

domain name · 24

download · 105

Dynamic HTML · 10, 131

Dynamic IP · 14

dynamic link libraries · 120

Dynamic Link Library · 10, 36

E

Edit Custom Field · 20

edit file descriptions · 105

edit messages · 88

else statement · 31

Email · 88

email address · 86

end statement · 32

Enforce Security · 21

error code 401 · 23, 52

ERROR.HTM · 53

European date format · 40

F

fdate macro · 38

field

system-maintained · 42

Field Manipulation · 42

field types · 19

Fields

binary · 54

FIELDS.DB File · 142

fileinfo · 47

folders · 21

for statement · 34

Format String · 38

Forms Applications · 128

ftime macro · 38

G

GETTEMPLATE · 137

group name · 22

Groups · 18, 41

GROUPS.DB File · 142

H

hashing · 54

header field · 45

hidden tag · 87

High ASCII · 89

high message pointer · 83

high-ASCII · 76

hit count · 35, 44

HITCOUNT.DLL · 44

Home Directory · 15

HTML · 24

HTML document · 15

HTML tags (in messages) · 76

http · 9, 17

I

if statement · 31

ifnot statement · 32

image map · 15

Incfield · 43

Includes · 15, 28, 30, 46

infinite loop · 34

InGroup macro · 41

internet · 12

IP Address · 13, 22, 57

ISMAP · 11

ISMAP.DLL · 59

Isuser macro · 44

J

Japanese date format · 40

JAVA · 16

Julian · 54

Julian Date · 37

L

LAN · 64

LibMan · 93, 95

Link Macros (WebMsg) · 77

linked documents · 26

List conferences command · 79

LIST.HTM · 56

LOGINNAME · 53

Logins · 23

Logs Directory · 15

long description · 101

loops · 33

M

Macro · 28

Macro Application · 11, 27

Macro Applications · 36, 136

Macros · 28

mailto · 79

MAKEPAGE · 123, 134

Map File · 59

Maps Directory · 15

Maximum Messages · 68

Member Of · 19

Message Length · 68

message threading · 77

Mime Types · 16

Modifying Libraries · 97

morning macro · 40

move files · 105

Mozilla · 45

multipart/form-data · 108

N

Nesting · 34

Netscape · 45, 94

Network Settings · 14

New Custom Field · 19

new files · 102

New Library · 96

New Messages · 83

new user account · 53

NEWUSER.HTM · 53

next message · 77

night macro · 40

Non-String Fields · 54

North American date format · 40

Not Member Of · 19

Number · 19

Number field · 41, 54

P

Page Application · 11, 27, 48

Page Applications · 123

Paradox · 20

parameters · 36

PASSHASH · 53

password · 23, 54, 58

Path To Files · 97, 106

picklists · 53

placeholder · 36

port · 14

Post a message command · 84

POSTBEGIN · 129

POSTEND · 129

POSTRESUME · 129

previous message · 77

PROFILE.DLL · 44, 51

profiles · 11, 17

Q

quoted text · 85

R

radio buttons · 53

Read command (WebMsg) · 74

Relational operations · 33

renumber · 84

Reply · 85

Return Document · 87

RUN directive · 48

S

save to disk · 105

Scripting · 28

Searching conferences · 81

Searchlight BBS · 10, 63, 88

SECMAN.EXE · 21

Security · 21

for conferences · 69

Security Groups · 18

Security Manager · 21

server side include · 27

ServerData Data Structure · 127

SERVINT.DLL · 45, 138

Setfield · 42

short description · 101

SHOW.HTM · 52

Shutting Down · 17

SLBBS directory · 65

SLIP · 14

SLPACK · 84

Spinnaker API · 120

START.HTM · 53

static pages · 27

String · 19

switch statement · 32

SYS.DLL · 36, 37, 136

SYS.DLL macros · 37

System Administrator · 70

system related macros · 37

system-maintained field · 20, 42

T

tables · 45

TCP/IP networking · 12

Temp Directory · 15

templates · 27, 70

thread · 80

Threading (WebMsg) · 77

Time and Date Macros · 37

Time Field · 19, 41, 54

translate · 76, 99

Translation · 89

U

undefine · 30

Upload · 94, 108

URL · 110

User Information Macros · 40

user name and profile · 40

User Profiles · 17

USER-AGENT field · 45

USERGRPS.EXE · 17

Users and Groups · 17

USERS.DB File · 141

V

variables · 28

VERIFY · 53

W

Warp · 11, 110

WCGITest · 112

WEBAPP.DLL · 132

WebFile · 10

WebFile Commands · 99

WebFile Macros · 98

WebMsg · 10, 32, 63

Macros · 72

Webversi · 11, 113, 121

while directive · 71

while statement · 33

white space · 34

Who command · 57

wildcard · 100

WinCGI · 11, 27, 111, 119, 128

working directory · 15

��

�PAGE �147�

�PAGE �51�

�PAGE �8�

